精英家教网 > 高中数学 > 题目详情

【题目】已知集合A={y|y=log2x,x≥4},B={y|y=( x , ﹣1≤x≤0}.
(1)求A∩B;
(2)若集合C={x|a≤x≤2a﹣1},且C∪B=B,求实数a的取值范围.

【答案】
(1)解:集合A={y|y=log2x,x≥4},

函数y=log2x,

∵x≥4,

∴y≥2,

∴值域为{y|y≥2}

∴集合A={y|y=log2x,x≥4}=[2,+∞)

B={y|y=( x,﹣1≤x≤0}.

函数y=( x

∵﹣1≤x≤0,

∴2≥y≥1,

∴值域为{y|2≥y≥1},

∴集合B=[1,2].

那么:A∩B={2}


(2)解:集合C={x|a≤x≤2a﹣1},

∵C∪B=B,

∴CB

当C=时,满足题意,此时2a﹣1<a,解得:a<1.

当C≠时,要使CB,则满足 ,解得:1

综上可得:实数a的取值范围是(﹣∞, ]


【解析】(1)求出y=log2x,x≥4的值域得到集合A,求出y=( x , ﹣1≤x≤0的值域得到集合B,根据集合的基本运算即可求A∩B;(2)集合C={x|a≤x≤2a﹣1},根据C∪B=B,建立条件关系即可求实数a的取值范围.
【考点精析】利用集合的交集运算对题目进行判断即可得到答案,需要熟知交集的性质:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则AB,反之也成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列函数在其定义域中,既是奇函数又是增函数的(
A.y=x+1
B.y=﹣x2
C.y=x|x|
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中,正确的是
·(1)任取x>0,均有3x>2x
·(2)当a>0,且a≠1时,有a3>a2
·(3)y=( x是减函数;
·(4)函数f(x)在x>0时是增函数,x<0也是增函数,所以f(x)是增函数;
·(5)若函数f(x)=ax2+bx+2与x轴没有交点,则b2﹣8a<0且a>0;
·(6)y=x2﹣2|x|﹣3的递增区间为[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的多面体是由一个直平行六面体被平面所截后得到的,其中

(Ⅰ)求证: 平面

(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面为矩形的四棱锥中, .

(1)证明:平面平面

(2)若异面直线所成角为 ,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)若恒成立,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若二次函数f(x)=ax2+bx+c(a,b,c∈R)满足f(x+1)﹣f(x)=4x+1,且f(0)=3.
(1)求f(x)的解析式;
(2)若在区间[﹣1,1]上,不等式f(x)>6x+m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a∈R,函数f(x)=x|x﹣a|.
(1)当a=2时,将函数f(x)写成分段函数的形式,并作出函数的简图,写出函数y=f(x)的单调递增区间;
(2)当a>2时,求函数y=f(x)在区间[1,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题P:4x﹣a2x+1≥0对x∈[﹣1,1]恒成立,命题Q:f(x)=log2(ax2﹣2x+ )的值域是R,若满足P且Q为假,P或Q为真,求实数a的取值范围.

查看答案和解析>>

同步练习册答案