精英家教网 > 高中数学 > 题目详情
14.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右焦点为F(2,0),设A、B为双曲线上关于原点对称的两点,AF的中点为M,BF的中点为N,若原点O在以线段MN为直径的圆上,直线AB的斜率为$\frac{{3\sqrt{7}}}{7}$,则双曲线的离心率为(  )
A.4B.2C.$\sqrt{5}$D.$\sqrt{3}$

分析 由题意可知:以MN为直径的圆过原点O,则OM⊥ON,则AF⊥BF,$\overrightarrow{AF}$=(2-x0,-y0),$\overrightarrow{BF}$=(2+x0,y0),由向量数量积的坐标表示求得x02+y02=4,由kAB=$\frac{{y}_{0}}{{x}_{0}}=\frac{3\sqrt{7}}{7}$,代入即可求得x02=$\frac{7}{4}$,y02=$\frac{9}{4}$,
代入双曲线方程得:$\frac{7}{4{a}^{2}}-\frac{9}{4{b}^{2}}$=1,求得a2=1,即可求出双曲线的离心率.

解答 解:由题意可知:设A(x0,y0),B(-x0,-y0),由右焦点F(2,0),则c=2
∵以MN为直径的圆过原点O,
∴OM⊥ON,
又∵OM∥BF,ON∥AF,
∴AF⊥BF,
$\overrightarrow{AF}$=(2-x0,-y0),$\overrightarrow{BF}$=(2+x0,y0),
∴$\overrightarrow{AF}•\overrightarrow{BF}$=(2-x0)(2+x0)-y02
∴4-x02-y02=0,
即x02+y02=4,
由kAB=$\frac{{y}_{0}}{{x}_{0}}=\frac{3\sqrt{7}}{7}$,
∴y02=$\frac{9}{7}$x02
∴x02+$\frac{9}{7}$x02=4,
解得:x02=$\frac{7}{4}$,y02=$\frac{9}{4}$,
代入双曲线方程得:$\frac{7}{4{a}^{2}}-\frac{9}{4{b}^{2}}$=1,
∴7b2-9a2=4a2b2,由b2=c2-a2=4-a2
∴7(4-a2)-9a2=4a2(4-a2),解得:a2=1或a2=7(舍),
∴a=1,
∴e=2,
故选:B.

点评 本题考查双曲线的标准方程及简单几何形状,考查向量数量积的坐标表示,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.下列关于算法的描述正确的是(  )
A.算法与求解一个问题的方法相同
B.算法只能解决一个问题,不能重复使用
C.算法过程要一步一步执行
D.有的算法执行完以后,可能没有结果

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知抛物线C的顶点在坐标原点O,对称轴为x轴,焦点为F,抛物线上一点A的横坐标为2,且|AF|=4.
(1)求抛物线的方程;
(2)过点M(8,0)作直线l交抛物线于B,C两点,求证:OB⊥OC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列通项公式可以作为等比数列通项公式的是(  )
A.an=2nB.${a_n}=\sqrt{n}$C.${a_n}={2^{-n}}$D.an=log2n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.定义在R的奇函数f(x),当x<0时,f(x)=-x2+x,则 f(2)=(  )
A.6B.-6C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.抛物线y2=-4x的通径长等于4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设a为实数,函数f(x)=x2+|x-a|+1,x∈R.
(1)讨论f(x)的奇偶性; 
(2)若x≥a,求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知三棱锥的三视图如图所示,则该三棱锥的体积是(  )
A.$2\sqrt{3}$B.4C.$4\sqrt{3}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)为奇函数,当x>0时,f(x)=x2-x,则当x<0时,函数f(x)的最大值为(  )
A.$-\frac{1}{4}$B.$\frac{1}{4}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

同步练习册答案