【题目】已知函数().
(1)讨论函数的单调性;
(2)求证: .
【答案】(1)答案见解析.(2)证明见解析
【解析】
(1)求导,对参数进行分类讨论,根据导数正负,即可判断函数单调性;
(2)构造函数,利用导数判断其单调性和最值,即可容易证明.
(1)定义域为,
当时,,
所以函数的单调递增区间为,递减区间为;
当时,令,得或,
当时,恒成立,
所以函数的单调递增区间为,无减区间;
所以函数的单调递增区间为和,单调递减区间为;
当时,,
所以函数的单调递增区间为和,单调递减区间为.
综上所述,当时,函数的单调递增区间为,递减区间为;
当时,函数的单调递增区间为,无减区间;
当时,函数的单调递增区间为和,单调递减区间为;
当时,函数的单调递增区间为和,单调递减区间为.
(2)设,
,
由(1)可知,当时,,
且的单调递增区间为,递减区间为,
所以的单调递增区间为,递减区间为,
故,所以在上单调递增
又,
所以当时,,时,;
又当时,,时,
所以
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,直线l的参数方程为 (t为参数),曲线C1的方程为ρ(ρ-4sin θ)=12,定点A(6,0),点P是曲线C1上的动点,Q为AP的中点.
(1)求点Q的轨迹C2的直角坐标方程;
(2)直线l与直线C2交于A,B两点,若|AB|≥2,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义两个函数的关系:函数的定义域分别为,若对任意的,总存在,使得,我们就称函数为的“子函数”.已知函数,,.
(1)求函数的单调区间;
(2)若为的一个“子函数”,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年末,武汉出现新型冠状病毒肺炎()疫情,并快速席卷我国其他地区,传播速度很快.因这种病毒是以前从未在人体中发现的冠状病毒新毒株,所以目前没有特异治疗方法,防控难度很大.武汉市出现疫情最早,感染人员最多,防控压力最大,武汉市从2月7日起举全市之力入户上门排查确诊的新冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和与确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户、不漏一人.在排查期间,一户6口之家被确认为“与确诊患者的密切接触者”,这种情况下医护人员要对其家庭成员随机地逐一进行“核糖核酸”检测,若出现阳性,则该家庭为“感染高危户”.设该家庭每个成员检测呈阳性的概率均为()且相互独立,该家庭至少检测了5个人才能确定为“感染高危户”的概率为,当时,最大,则( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的参数方程为(为参数),直线经过点且倾斜角为.
(1)求曲线的极坐标方程和直线的参数方程;
(2)已知直线与曲线交于,满足为的中点,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“水资源与永恒发展”是2015年联合国世界水资源日主题,近年来,某企业每年需要向自来水厂所缴纳水费约4万元,为了缓解供水压力,决定安装一个可使用4年的自动污水净化设备,安装这种净水设备的成本费(单位:万元)与管线、主体装置的占地面积(单位:平方米)成正比,比例系数约为0.2.为了保证正常用水,安装后采用净水装置净水和自来水厂供水互补的用水模式.假设在此模式下,安装后该企业每年向自来水厂缴纳的水费C(单位:万元)与安装的这种净水设备的占地面积x(单位:平方米)之间的函数关系是C(x)= (x≥0,k为常数).记y为该企业安装这种净水设备的费用与该企业4年共将消耗的水费之和.
(1)试解释C(0)的实际意义,并建立y关于x的函数关系式并化简;
(2)当x为多少平方米时,y取得最小值,最小值是多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的离心率为,直线:与以原点为圆心,以椭圆的短半轴长为半径的圆相切.为左顶点,过点的直线交椭圆于,两点,直线,分别交直线于,两点.
(1)求椭圆的方程;
(2)以线段为直径的圆是否过定点?若是,写出所有定点的坐标;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,为多面体,平面与平面垂直,点在线段上, 都是正三角形.
(1)证明:直线∥面;
(2)在线段上是否存在一点,使得二面角的余弦值是,若不存在请说明理由,若存在请求出点所在的位置。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com