精英家教网 > 高中数学 > 题目详情

分别为轴、轴上的点,且,动点满足:.

(1)求动点的轨迹的方程;

(2)过定点任意作一条直线与曲线交与不同的两点,问在轴上是否存在一定点,使得直线的倾斜角互补?若存在,求出点的坐标;若不存在,请说明理由.

(1).                     

(2)存在点符合题意.


解析:

(1)设,则

,即.                     

(2)设直线的方程为:

假设存在点满足题意,则

,即

,又

,                          

由于,则

对不同的值恒成立,即对不同的值恒成立,

,即,故存在点符合题意.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,△ABC的内切圆与三边AB、BC、CA的切点分别为D、E、F,已知B(-
2
,0)
,C(
2
,0)
,内切圆圆心I(1,t).设A点的轨迹为L
(1)求L的方程;
(2)过点C作直线m交曲线L于不同的两点M、N,问在x轴上是否存在一个异于点C的定点Q.使
QM
QC
|
QM
|
=
QN
QC
|
QN
|
对任意的直线m都成立?若存在,求出Q的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省、鹰潭一中高三4月联考理科数学试卷(解析版) 题型:解答题

设椭圆的左、右焦点分别为,上顶点为,离心率为,在轴负半轴上有一点,且

(1)若过三点的圆恰好与直线相切,求椭圆C的方程;

(2)在(1)的条件下,过右焦点作斜率为的直线与椭圆C交于两点,在轴上是否存在点,使得以为邻边的平行四边形是菱形,如果存在,求出的取值范围;如果不存在,说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年北京市朝阳区高三上学期期末理科数学卷 题型:解答题

设椭圆的左、右焦点分别为,上顶点为,过点垂直的直线交轴负半轴于点,且,若过三点的圆恰好与直线相切. 过定点的直线与椭圆交于两点(点在点之间).

(Ⅰ)求椭圆的方程;

(Ⅱ)设直线的斜率,在轴上是否存在点,使得以为邻边的平行四边形是菱形. 如果存在,求出的取值范围,如果不存在,请说明理由;

(Ⅲ)若实数满足,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2013届江苏省南通市高二第一学期期末考试数学 题型:填空题

.如右上图:设椭圆的左,右两个焦点分别为,短轴的上端点为,短轴上的两个三等分点为,且为正方形,若过点作此正方形的外接圆的切线在轴上的一个截距为,则此椭圆方程的方程为    ▲   

 

查看答案和解析>>

同步练习册答案