设,、分别为轴、轴上的点,且,动点满足:.
(1)求动点的轨迹的方程;
(2)过定点任意作一条直线与曲线交与不同的两点、,问在轴上是否存在一定点,使得直线、的倾斜角互补?若存在,求出点的坐标;若不存在,请说明理由.
科目:高中数学 来源: 题型:
2 |
2 |
| ||||
|
|
| ||||
|
|
查看答案和解析>>
科目:高中数学 来源:2011-2012学年江西省、鹰潭一中高三4月联考理科数学试卷(解析版) 题型:解答题
设椭圆的左、右焦点分别为,上顶点为,离心率为,在轴负半轴上有一点,且
(1)若过三点的圆恰好与直线相切,求椭圆C的方程;
(2)在(1)的条件下,过右焦点作斜率为的直线与椭圆C交于两点,在轴上是否存在点,使得以为邻边的平行四边形是菱形,如果存在,求出的取值范围;如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源:2013届江苏省南通市高二第一学期期末考试数学 题型:填空题
.如右上图:设椭圆的左,右两个焦点分别为,短轴的上端点为,短轴上的两个三等分点为,且为正方形,若过点作此正方形的外接圆的切线在轴上的一个截距为,则此椭圆方程的方程为 ▲ .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com