精英家教网 > 高中数学 > 题目详情

【题目】10四面体ABCD及其三视图如图所示平行于棱ADBC的平面分别交四面体的棱ABBDDCCA于点EFGH

1求四面体ABCD的体积

2证明四边形EFGH是矩形

【答案】12详见解析

【解析】

试题分析:(证明AD平面BDC即可求四面体ABCD的体积;(证明四边形EFGH是平行四边形EFHG即可证明四边形EFGH是矩形

试题解析1由该四面体的三视图可知

BDDCBDADADDC

BD=DC=2AD=1

AD平面BDC

四面体体积

V=××2×2×1=

2证明BC平面EFGH

平面EFGH∩平面BDC=FG

平面EFGH∩平面ABC=EH

BCFGBCEHFGEH

同理EFADHGAD

EFHG

四边形EFGH是平行四边形

AD平面BDC

ADBCEFFG

四边形EFGH是矩形

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数的图象形如汉字“囧”,故称其为“囧函数”.

下列命题:

①“囧函数”的值域为

②“囧函数”在上单调递增;

③“囧函数”的图象关于轴对称;

④“囧函数”有两个零点;

⑤“囧函数”的图象与直线

至少有一个交点.正确命题的个数为( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,设

(1)求函数的最小正周期;

(2)当时,求函数的最大值及最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】上饶某购物中心在开业之后,为了解消费者购物金额的分布,在当月的电脑消费小票中随机抽取张进行统计,将结果分成5组,分别是,制成如图所示的频率分布直方图(假设消费金额均在元的区间内).

1)若在消费金额为元区间内按分层抽样抽取6张电脑小票,再从中任选2张,求这2张小票均来自元区间的概率;

2)为做好五一劳动节期间的商场促销活动,策划人员设计了两种不同的促销方案:

方案一:全场商品打8.5折;

方案二:全场购物满200元减20元,满400元减50元,满600元减80元,满800元减120元,以上减免只取最高优惠,不重复减免.利用直方图的信息分析哪种方案优惠力度更大,并说明理由(直方图中每个小组取中间值作为该组数据的替代值).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面以任意角度截正方体,所截得的截面图形可以是_____填上所有你认为正确的序号

正三边形 正四边形 正五边形 正六边形 钝角三角形 等腰梯形 非矩形的平行四边形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在D上的函数,如果满足:对任意,存在常数,都有成立,则称D上的有界函数,其中M称为函数的上界已知函数

,求函数上的值域,并判断函数上是否为有界函数,请说明理由;

若函数上是以3为上界的有界函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数在区间上递减,则a的取值范围是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一种药在病人血液中的含量不低于2克时,它才能起到有效治疗的作用,已知每服用克的药剂,药剂在血液中的含量随着时间小时变化的函数关系式近似为,其中

若病人一次服用9克的药剂,则有效治疗时间可达多少小时?

若病人第一次服用6克的药剂,6个小时后再服用3m克的药剂,要使接下来的2小时中能够持续有效治疗,试求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知随机变量X~B(6,0.4),则当η=-2X+1时,D(η)=(  )
A.-1.88
B.-2.88
C.5. 76
D.6.76

查看答案和解析>>

同步练习册答案