精英家教网 > 高中数学 > 题目详情
17.①当α∈(0,$\frac{π}{2}$),求证:sinα<α<tanα;
①当α∈(0,$\frac{π}{2}$),求证:sinα+cosα>1.

分析 ①由题意作出三角函数线,通过三角形的面积以及扇形面积的大小比较可得.
②作出三角函数线,由三角形两边之和大于第三边可得结论.

解答 解:①在直角坐标系中结合单位圆作出锐角α的正弦线和正切线,
由图可知sinα=MP,α=$\widehat{AP}$,tanα=AT,
∵S△AOP=$\frac{1}{2}$×MP×1=$\frac{1}{2}$sinα,S扇形AOP=$\frac{1}{2}$×$\widehat{AP}$×1=$\frac{1}{2}$α,S△AOT=$\frac{1}{2}$×AT×1=$\frac{1}{2}$tanα,S△AOP<S扇形AOP<S△AOT
∴MP<$\widehat{AP}$<AT,即sinα<α<tanα,
故答案为:sinα<α<tanα.

②如图P为α与单位圆交点,
则OP=1,OM、MP分别为α的余弦线,正弦线,
由三角形两边之和大于第三边可得OM+MP>OP,
即sinα+cosα>1.

点评 本题考查三角函数线,考查转化思想以及判断能力,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.函数f(x)=x2-2ax+a+2,若f(x)在[0,a]上取得最大值3,最小值2,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若直线y=kx-1与双曲线x2-y2=1的左支有两个公共点,则k的取值范围是(  )
A.(-$\sqrt{2}$,0)B.(-$\sqrt{2}$,$\sqrt{2}$)C.(-$\sqrt{2}$,-1)D.(-$\sqrt{2}$,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数y=-x2+mx-2,x∈[0,5],在x=2处取得最大值.
(1)求m的值,并写出函数的单调区间;
(2)求函数的最大值、最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设函数f(x)=x3(x∈R),当0≤θ≤$\frac{π}{2}$时,f(cos2θ+2msinθ)+f(-2m-2)<0恒成立,则实数m的取值范围是(  )
A.(0,1)B.(-$\frac{1}{2}$,1)C.(-∞,1)D.(-$\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如果棱长为2$\sqrt{2}$的正四面体的顶点都在一个球面上,那么这个球的表面积是(  )
A.B.12πC.16πD.20π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在数学研究中,函数的变化率是研究的重点对象之一,定义$\frac{f(x)+f(a)}{|x-a|}$为函数f(x)对实数x=a的平均定向增长率.已知某物体离开初始位置的距离f(x)与时间x的函数关系式为f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x+4,x≥2}\\{37-18x,x<2}\end{array}\right.$求该物体离开初始位置的距离对x=2的平均定向增长率的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=$\sqrt{x+1}$+ln(4-x)的定义域为(  )
A.[-1,4)B.(-1,+∞)C.(-1,4)D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,函数f(x)的图象为折线 AC B,则不等式f(x)≥log2(x+1)的解集是(-1,1].

查看答案和解析>>

同步练习册答案