精英家教网 > 高中数学 > 题目详情

【题目】已知数列满足:,其中,数列满足:

1)当时,求的值;

2)证明:对任意均成立,并求数列的通项公式;

3)是否存在正数,使得数列的每一项均为整数,如果不存在,说明理由,如果存在,求出所有的.

【答案】1;(2)证明见解析,;(3.

【解析】

1)根据计算得到,再根据的关系,得到答案;(2)由条件可得,然后得到,两式相减,从而进行证明,并以根据所证的式子可得到的通项;(3)假设存在正数,由(2)可知,由,得到,再利用数学归纳法进行证明满足题意.

1,所以

所以

2)因为

所以

所以

下式减上式,得

整理得

即有

所以

所以

3)假设存在正数,使得数列的每一项均为整数,

由(2)可知①,

,可得

时,为整数,利用

结合①式,反复递推,可知每一项均为整数,所以符合题意,

时,①式变为

下用数学归纳法证明为偶数,为整数

时,结论显然成立,

假设时,结论成立,此时为偶数,为整数,

时,为偶数,为整数,

所以时,命题也成立.

所以数列为整数数列.此时满足题意.

综上所述,满足题意的的取值集合为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在小正方形边长为1的网格中画出了某多面体的三视图,则该多面体的外接球表面积为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个说法,其中正确的是( )

A.命题“若,则”的否命题是“若,则

B.”是“双曲线的离心率大于”的充要条件

C.命题“”的否定是“

D.命题“在中,若,则是锐角三角形”的逆否命题是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校组织高考组考工作,为了搞好接待组委会招募了名男志愿者和名女志愿者,调查发现,男、女志愿者中分别有人和人喜爱运动,其余不喜爱.

1)根据以上数据完成以下列联表;并要求列联表的独立性检验,能否在犯错误的概率不超过的前提下认为性别与喜爱运动有关?

喜爱运动

不喜爱运动

总计

总计

2)如果从喜欢运动的女志愿者中(其中恰有人会外语),抽取名负责翻译工作,则抽出的志愿者中人恰有一人胜任翻译工作的概率是多少?

参考公式:,其中

参考答数:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定椭圆.称圆心在原点O,半径为的圆是椭圆C准圆.若椭圆C的一个焦点为,其短轴上的一个端点到F的距离为

(1)求椭圆C的方程和其准圆方程;

(2)P是椭圆C准圆上的一个动点,过动点P作直线,使得与椭圆C都只有一个交点,试判断是否垂直?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,设直线轴的交点为,过点且斜率为的直线与椭圆交于两点,为线段的中点.

(1)若直线的倾斜角为,求的值;

(2)设直线交直线于点,证明:直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数,)以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)设曲线交于两点,点,若成等比数列,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在第十五次全国国民阅读调查中,某地区调查组获得一个容量为的样本,其中城镇居民人,农村居民人.在这些居民中,经常阅读的城镇居民人,农村居民人.

(1)填写下面列联表,并判断是否有的把握认为,经常阅读与居民居住地有关?

城镇居民

农村居民

合计

经常阅读

不经常阅读

合计

(2)调查组从该样本的城镇居民中按分层抽样抽取出人,参加一次阅读交流活动,若活动主办方从这位居民中随机选取人作交流发言,求被选中的位居民都是经常阅读居民的概率.

附:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高中年级开设了丰富多彩的校本课程,甲、乙两班各随机抽取了5名学生的学分,用茎叶图表示.分别表示甲、乙两班各自5名学生学分的标准差,则_______.(填“”“<”或“=”)

查看答案和解析>>

同步练习册答案