精英家教网 > 高中数学 > 题目详情
设f(x)是一次函数,f(8)=15,且f(2)、f(5)、f(14)成等比数列,令,则Sn=   
【答案】分析:先通过条件求出函数f(x)的表达式,进而利用求和公式求和.
解答:解:因为f(x)是一次函数,所以设f(x)=ax+b,(a≠0)因为f(8)=15,所以f(8)=8a+b=15     ①
 又f(2)、f(5)、f(14)成等比数列,所以f(2)f(14)=f2(5),即(2a+b)(14a+b)=(5a+b)2   ②
两式联立解得a=2,b=-1,即f(x)=2x-1.
则f(n)=2n-1,是首项为f(1)=1,公差为2的等差数列.
所以Sn=n+=n2
故答案为:n2
点评:本题考查利用待定系数法求函数的表达式,等比数列的性质以及等差数列的前n项和公式.考查学生的运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给定区间(a,b),定义其区间长度为b-a.设f(x)是一次函数,且满足f(0)=-5,f[f(0)]=-15,若不等式f(x)f(m-x)>0的解集形成的区间长度为2,则实数m的所有可能取值为
3或7
3或7

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是一次函数,f(0)、f(3)、f(24)成等比数列,且f(0)>0,函数f(x)的图象与二次函数y=x2+6的图象有且只有一个公共点.
(Ⅰ)求f(x)的解析式:
(Ⅱ)设g(x)=mx2+4mx-f(x),若g(x)在区间[1,4]上是减函数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绍兴一模)设f(x)是一次函数,f(8)=15,且f(2)、f(5)、f(14)成等比数列,令Sn=f(1)+f(2)+…+f(n),n∈N*,则Sn=
n2
n2

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省盐城中学高二(下)期末数学试卷(文科)(解析版) 题型:填空题

给定区间(a,b),定义其区间长度为b-a.设f(x)是一次函数,且满足f(0)=-5,f[f(0)]=-15,若不等式f(x)f(m-x)>0的解集形成的区间长度为2,则实数m的所有可能取值为   

查看答案和解析>>

科目:高中数学 来源:2007-2008学年重庆八中高三(上)第一次月考数学试卷(理科)(解析版) 题型:解答题

设f(x)是一次函数,f(0)、f(3)、f(24)成等比数列,且f(0)>0,函数f(x)的图象与二次函数y=x2+6的图象有且只有一个公共点.
(Ⅰ)求f(x)的解析式:
(Ⅱ)设g(x)=mx2+4mx-f(x),若g(x)在区间[1,4]上是减函数,求实数m的取值范围.

查看答案和解析>>

同步练习册答案