精英家教网 > 高中数学 > 题目详情

【题目】如图所示,四边形ABCDBDEF均为菱形,,且

求证:平面BDEF

求直线AD与平面ABF所成角的正弦值.

【答案】(1)证明见解析.

(2) .

【解析】

分析:(1))设相交于点,连接,由菱形的性质可得,由等腰三角形的性质可得,利用线面垂直的判定定理可得结果;(2)先证明平面.

可得两两垂直,以建立空间直角坐标系,求出,利用向量垂直数量积为零列方程组求出平面的法向量,由空间向量夹角余弦公式可得结果.

详解:(1)设相交于点,连接

∵四边形为菱形,∴,且中点,

,∴

,∴平面.

(2)连接,∵四边形为菱形,且,∴为等边三角形,

中点,∴,又,∴平面.

两两垂直,∴建立空间直角坐标系,如图所示,

,∵四边形为菱形,,∴.

为等边三角形,∴.

.

设平面的法向量为,则

,得.设直线与平面所成角为

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)若,求的单调区间;

2)若在区间上是增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 下列结论错误的是

A. 命题:“若,则”的逆否命题是“若,则

B. ”是“”的充分不必要条件

C. 命题:“ ”的否定是“

D. 若“”为假命题,则均为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《福建省高考改革试点方案》规定:从2018年秋季高中入学的新生开始,不分文理科;2021年开始,高考总成绩由语数外3门统考科目和物理、化学等六门选考科目构成,将每门选考科目的考生原始成绩从高到低划分为AB+BC+CD+DE8个等级,参照正态分布原则,确定各等级人数所占比例分别为3%7%18%22%22%18%7%3%,选考科目成绩计入考生总成绩时,将AE等级内的考生原始成绩,依照等比例转换法则,分别转换到[91100][8190][71.80][6170][5160][4150][3140][2130]八个分数区间,得到考生的等级成绩,某校高一年级共2000人,为给高一学生合理选科提供依据,对六门选考科目进行测试,其中化学考试原始成绩 基本服从正态分布

(1)求化学原始成绩在区间(57,96)的人数;

(2)以各等级人数所占比例作为各分数区间发生的概率,按高考改革方案,若从全省考生中随机抽取3人,记表示这3人中等级成绩在区间[71,90]的人数,求事件的概率

(附:若随机变量,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为偶函数,且在上单调递减,则的解集为  

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 如图,是等腰直角三角形,分别为的中点,沿折起,得到如图所示的四棱锥

(1)求证:平面

(2)当四棱锥体积取最大值时,

(i) 写出最大体积;

(ii) 与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的奇函数,且,若时,有成立.

(1)判断上的单调性,并用定义证明;

(2)解不等式

(3)若对所有的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市乘坐出租车的收费办法如下:

不超过4千米的里程收费12元;超过4千米的里程按每千米2元收费(对于其中不足千米的部分,若其小于0.5千米则不收费,若其大于或等于0.5千米则按1千米收费;当车程超过4千米时,另收燃油附加费1元,相应系统收费的程序框图如图所示,其中(单位:千米)为行驶里程,(单位:元)为所收费用,用表示不大于的最大整数,则图中处应填(

A.

B.

C.

D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有甲、乙二人去看望高中数学张老师,期间他们做了一个游戏,张老师的生日是日,张老师把告诉了甲,把告诉了乙,然后张老师列出来如下10个日期供选择: 2月5日,2月7日,2月9日,3月2日,3月7日,5月5日,5月8日,7月2日,7月6日,7月9日.看完日期后,甲说“我不知道,但你一定也不知道”,乙听了甲的话后,说“本来我不知道,但现在我知道了”,甲接着说,“哦,现在我也知道了”.请问张老师的生日是_______

查看答案和解析>>

同步练习册答案