精英家教网 > 高中数学 > 题目详情
在△ABC中,点M是BC的中点,角A=120°,
AB
AC
=-2,则|
AM
|的最小值为
 
考点:平面向量数量积的运算
专题:计算题,平面向量及应用
分析:运用向量的数量积的定义,求得bc=4,再由中点的向量表示,结合向量的平方即为模的平方,运用重要不等式c2+b2≥2bc,即可得到最小值.
解答: 解:设AB=c,AC=b,
AB
AC
=-2,A=120°,
即有bccos120°=-2,得bc=4,
点M是BC的中点,则
AM
=
1
2
AB
+
AC
),
AM
2
=
1
4
AB
2
+
AC
2
+2
AB
AC
)=
1
4
(c2+b2-4)
1
4
(2bc-4)=
1
4
×(2×4-4)=1.
当且仅当b=c=2取得最小值,且为1.
则|
AM
|的最小值为1.
故答案为:1.
点评:本题考查向量的数量积的定义和性质,考查中点向量的表示,考查重要不等式的运用,考查运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆O的方程为x2+y2=25,设点P(x1,y1),直线m:x1x+y1y=25.
(1)若点P在圆O内,试判断直线m与圆O的位置关系;
(2)若点P在圆O上,且x1=3,y1>0,过点P作直线PA,PB分别交圆O于两点A,B,且直线PA,PB的斜率互为相反数.
①若直线PA过点O,求tan∠APB的值;
②试问:不论直线PA的斜率怎样变化,直线AB的斜率是否总为定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

lim
n→∞
xn
=0,则实数x的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
满足|
a
|=4,|
b
|=2,|
a
+
b
|=2
3

(1)求
a
b

(2)求|3
a
-4
b
|
(3)求(
a
-2
b
)•(
a
+
b
).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,平面正六边形ABCDEF中,不能和
AB
组成平面向量基底的是(  )
A、
AB
+
BC
B、
AB
-
AF
C、
DE
D、2
CD

查看答案和解析>>

科目:高中数学 来源: 题型:

执行右边的程序框图,若第一次输入的a的值为-1.2,第二次输入的a的值为1.2,则第一次、第二次输出的a的值分别为
 
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,平面ABEF⊥平面ABC,四边形ABEF为矩形,AC=BC,O为AB的中点,OF⊥EC.
(Ⅰ)求证:OE⊥FC;
(Ⅱ)若AB=2,AC=
3
,求二面角F-CE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

用更相减损术求30和18的最大公约数时,第三次作的减法为(  )
A、18-16=6
B、12-6=6
C、6-6=0
D、30-18=12

查看答案和解析>>

科目:高中数学 来源: 题型:

设点P是线段P1P2上的一点,P1,P2的坐标分别是(x1,y1),(x2,y2),当
P1P
PP2
时,点P的坐标是
 

查看答案和解析>>

同步练习册答案