精英家教网 > 高中数学 > 题目详情
18.已知函数y=x2+1,求:
(1)在点(1,2)处的切线方程;
(2)过点(1,1)的切线方程.

分析 (1)欲求在点(1,2)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决;
(2)设切点坐标,求出函数的导数,利用导数的几何意义,即可得到结论.

解答 解:由题意y'=2x…(2分)
(1)∵切线的斜率k=2×1=2…(1分)
∴所求切线方程为:y-2=2×(x-1)…(1分)
即2x-y=0…(1分)
(2)设切点$({x_0},{x_0}^2+1)$,则切线斜率k=2x0…(1分),
∴切线方程为:$y-({x_0}^2+1)=2{x_0}•(x-{x_0})$…(1分)
又切线过点(1,1)∴$1-({x_0}^2+1)=2{x_0}•(1-{x_0})$…(1分)
∴x0=0或x0=2…(1分)
∴所求切线方程为y-1=0或y-5=4•(x-2)…(2分)
即y=1或4x-y-3=0…(1分)

点评 本题主要考查导数的几何意义,根据条件求出对应的切线斜率和切点坐标是解决本题的关键,注意过点的切线和在点的切线之间的区别.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.若直线2ax-by+2=0(a>0,b>0),经过圆x2+y2+2x-4y+1=0的圆心,则$\frac{1}{a}+\frac{1}{b}$的最小值是(  )
A.$\frac{1}{2}$B.2C.$\frac{1}{4}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数$f(x)=\frac{x(1+lnx)}{x-1}$,若f(x)>k(k∈Z)对任意x>1恒成立,则整数k的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,A:B:C=1:2:3,则a:b:c=(  )
A.1:2:3B.sin1:sin2:sin3C.1:$\sqrt{3}$:2D.1:2:$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如表为某公司员工工作年限x(年)与平均月薪y(千元)对照表.已知y关于x的线性回归方程为$\stackrel{∧}{y}$=0.7x+0.35,则下列结论错误的是(  )
x3456
y2.5t44.5
A.回归直线一定过点(4.5,3.5)
B.工作年限与平均月薪呈正相关
C.t的取值是3.5
D.工作年限每增加1年,工资平均提高700元

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在四棱锥中P-ABCD,底面ABCD是正方形,侧面PAD⊥底面ABCD,且PA=PD=$\sqrt{2}$,PA⊥PD,E,F分别为PC,BD的中点.
(Ⅰ)求证:EF||平面PAD;
(Ⅱ)求三棱锥P-CDF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如表是某厂1-4月份用水量(单位:百吨)的一组数据:
月份x1234
用水量4.5432.5
由散点可知,用水量y与月份x之间由较好的线性相关关系,其线性回归方程是$\stackrel{∧}{y}$=0.7x+a,则a等于5.25.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知正项数列{an}中,a1=1,a2=2,2an2=an-12+an+22(n≥2),bn=$\frac{1}{{a}_{n}+{a}_{n+1}}$记数列{bn}的前n项和为Sn,则S33的值是(  )
A.$\sqrt{99}$B.$\sqrt{33}$C.4$\sqrt{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数$f(x)=\frac{1}{2}a{x^2}-(a+1)x+lnx$,$g(x)={x^2}-2bx+\frac{7}{8}$.
(1)当a<1时,求函数f(x)的单调区间;
(2)当$a=\frac{1}{4}$时,函数f(x)在(0,2]上的最大值为M,若存在x∈[1,2],使得g(x)≥M成立,求实数b的取值范围.

查看答案和解析>>

同步练习册答案