精英家教网 > 高中数学 > 题目详情
如图,在椭圆C中,点F1是左焦点,A(a,0),B(0,b)分别为右顶点和上顶点,点O为椭圆的中心.又点P在椭圆上,且满足条件:OP∥AB,点H是点P在x轴上的?射影.

(1)求证:当a取定值时,点H必为定点;

(2)如果点H落在左顶点与左焦点之间,试求椭圆的离心率的取值范围;

(3)如果以OP为直径的圆与直线AB相切,且凸四边形ABPH的面积等于3+2,求椭圆的方程.

解:(1)证明:由kAB=,OP∥AB,得lOP:y=x,代入椭圆方程=1,得x2=,

∴P(a,b)或P(a,b).∵PH⊥x轴,

∴H(a,0)或H(a,0).∵a为定值,∴H为定点.

(2)∵点H落在左顶点与左焦点之间,∴只有H(a,0),且-a<a<-c,

可解得0<e<.

(3)以OP为直径的圆与直线AB相切等价于点O到直线AB的距离等于|OP|.

由条件设直线AB:+=1,则点O到直线AB的距离d=,

又|OP|=,∴=,得a2+b2=2ab.①

又由S四边形ABPH=SABO+S四边形OBPH=ab+(b+b)a=ab=3+,

得ab=4,②

由①②解得a2=4(+1),b2=4(-1),所以所求椭圆方程为=1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在椭圆C中,点F1是左焦点,A(a,0),B(0,b)分别为右顶点和上顶点,点O为椭圆的中心.又点P在椭圆上,且满足条件:OP∥AB,点H是点P在x轴上的射影.
(1)求证:当a取定值时,点H必为定点;
(2)如果点H落在左顶点与左焦点之间,试求椭圆离心率的取值范围;
(3)如果以OP为直径的圆与直线AB相切,且凸四边形ABPH的面积等于3+
2
,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•武汉模拟)如图,在椭圆C:
x2
4
+
y2
3
=1
中,F1,F2分别为椭圆C的左右两个焦点,P为椭圆上且在第一象限内的点,△PF1F2的重心为G,内心为I.
(1)求证:IG∥F1F2
(2)已知A为椭圆C的左顶点,直线l过右焦点F2与椭圆C交于M,N两点,若AM,AN的斜率k1,k2满足k1+k2=-
1
2
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在椭圆C中,点F1是左焦点,A(a,0),B(0,b)分别为右顶点和上顶点,点O为椭圆的中心.又点P在椭圆上,且满足条件:OP∥AB,点H是点P在x轴上的射影.
(1)求证:当a取定值时,点H必为定点;
(2)如果点H落在左顶点与左焦点之间,试求椭圆离心率的取值范围;
(3)如果以OP为直径的圆与直线AB相切,且凸四边形ABPH的面积等于数学公式,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:2008年湖北省武汉市高三四月调考数学试卷(理科)(解析版) 题型:解答题

如图,在椭圆C:中,F1,F2分别为椭圆C的左右两个焦点,P为椭圆上且在第一象限内的点,△PF1F2的重心为G,内心为I.
(1)求证:IG∥F1F2
(2)已知A为椭圆C的左顶点,直线l过右焦点F2与椭圆C交于M,N两点,若AM,AN的斜率k1,k2满足,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:2008年浙江省杭州市高考数学二模试卷(理科)(解析版) 题型:解答题

如图,在椭圆C中,点F1是左焦点,A(a,0),B(0,b)分别为右顶点和上顶点,点O为椭圆的中心.又点P在椭圆上,且满足条件:OP∥AB,点H是点P在x轴上的射影.
(1)求证:当a取定值时,点H必为定点;
(2)如果点H落在左顶点与左焦点之间,试求椭圆离心率的取值范围;
(3)如果以OP为直径的圆与直线AB相切,且凸四边形ABPH的面积等于,求椭圆的方程.

查看答案和解析>>

同步练习册答案