精英家教网 > 高中数学 > 题目详情
13.将二进制数101101(2)化为十进制数,结果为45;再将结果化为8进制数,结果为55(8)

分析 根据二进制转化为十进制的方法,分别用每位数字乘以权重,累加后即可得到结果;根据“除8取余法”的方法转化为对应的八进制数即可得到结果.

解答 解:101101(2)
=1×20+0×21+1×22+1×23+0×24+1×25
=1+4+8+32
=45.
又45=8×5+5,∴45=55(8)
故答案为:45,55(8)

点评 本题以进位制的转换为背景考查算法的多样性,解题的关键是熟练掌握进位制的转化规则,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知a=30.2,b=0.2-3,c=(-3)0.2,则a,b,c的大小关系为(  )
A.a>b>cB.b>a>cC.c>a>bD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆方程C:$\frac{{x}^{2}}{m-2}$+$\frac{{y}^{2}}{7-m}$=1
(I)求实数m的取值范围;
(II)当m=6时,若椭圆的左右焦点分别为F1,F2,直线l过椭圆的左焦点F1并且与椭圆C交于A,B两点,求△ABF2的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知$a={log_{0.7}}0.9,b={log_{11}}0.9,c={1.1^{0.9}}$,则这三个数从小到大排列为b<a<c.(用“<”连接)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)的定义域是(2,6],则函数f(2x)的定义域是(1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,A是两条平行直线之间的一定点,且点A到两平行直线的距离分别为AM=1,AN=$\sqrt{2}$,设△ABC,AC⊥AB,且顶点B、C分别在两平行直线上运动,则
(1)△ABC面积的最小值为$\sqrt{2}$;
(2)$\frac{1}{AB}+\frac{{\sqrt{2}}}{AC}$的最大值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设$a>\frac{2}{3}$,且$x∈[-\frac{a}{2},-\frac{1}{3}]$时,|3x+1|-|2x+a|<-4x-2,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.经过点M(1,1)且在两轴上截距相等的直线是(  )
A.x+y=2B.x+y=1C.x=1或y=1D.x+y=2或x-y=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知α∈(0,$\frac{π}{2}$),sinα=$\frac{3}{5}$,则cosα=$\frac{4}{5}$.

查看答案和解析>>

同步练习册答案