精英家教网 > 高中数学 > 题目详情
(2011•温州二模)若(x+1)5-x5=a0+a1(x+4)4x+a2(x+1)3x2+a3(x+1)2x3+a4(x+1)x4,且a1(i=0,1,…,4)是常数,则a1+a3=
15
15
分析:分别求出等式左、右边展开式的常数项,列出方程求出a0,分别求出等式左、右边展开式的一次项,列出方程求出a1,分别求出等式左、右边展开式的二次项,列出方程求出a2,分别求出等式左、右边展开式的三次项,列出方程求出a3,求出a1+a3的值.
解答:解:据题意:(x+1)5-x5=a0+a1(x+4)4x+a2(x+1)3x2+a3(x+1)2x3+a4(x+1)x4中,
左式=(x+1)5-x5=C50x5+C51x4+…+C55x0-x5=C51x4+C52x3+C53x2+C54x+1,
分析可得左式中常数项为1,右式中常数项为a0,则a0=1;
左式中x的1次项为5,右式中x的1次项为C51,C51=a1即a1=5
左式中x的2次项为C52,右式中x的2次项为C41a1+a2,则C52=C41a1+a2即4a1+a2=10
解可得,a2=-10
左式中x的3次项为C53,右式中x的3次项为C42a1+C31a2+a3
则C53=C42a1+C31a2+a3即10=6a1+3a2+a3
解可得a3=10
所以a1+a3=15
故答案为15.
点评:本题考查二项式定理的应用,难点在于分析右式中x的n次方的系数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•温州二模)某程序框图如图所示,则该程序运行后输出的S的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•温州二模)下列函数中,在(0,1)上有零点的函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•温州二模)已知定义在R上的函数y=f(x)为奇函数,且y=f(x+1)为偶函数,f(1)=1,则f(3)+f(4)=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•温州二模)已知F是椭圆
x2
a2
+
y2
b2
=1
(a>0,b>0)的左焦点,若椭圆上存在点P,使得直线PF与圆x2+y2=b2相切,当直线PF的倾斜角为
3
,则此椭圆的离心率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•温州二模)函数f(x)=
1
3
x3-
1
2
ax2+
2
27
x+1
的极值点是x1,x2,函数g(x)=x-alnx的极值点是x0,若x0+x1+x2<2.
(I )求实数a的取值范围;
(II)若存在实数a,使得对?x3,x4∈[1,m],不等式f(x3)≤g(x4)恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案