【题目】如图,已知抛物线C顶点在坐标原点,焦点F在Y轴的非负半轴上,点是抛物线上的一点.
(1)求抛物线C的标准方程
(2)若点P,Q在抛物线C上,且抛物线C在点P,Q处的切线交于点S,记直线 MP,MQ的斜率分别为k1,k2,且满足,当P,Q在C上运动时,△PQS的面积是否为定值?若是,求出△PQS的面积;若不是,请说明理由.
科目:高中数学 来源: 题型:
【题目】某校高三年级学生会主席团有共有名同学组成,其中有名同学来自同一班级,另外两名同学来自另两个不同班级.现从中随机选出两名同学参加会议,则两名选出的同学来自不同班级的概率为( )
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在首届中国国际商品博览会期间,甲、乙、丙三家供货公司各签订了两个供货合同,已知这三家公司供货合同中金额分别是300万元和600万元、300万元和900万元、600万元和900万元,甲看了乙的供货合同说:“我与乙的供货合同中金额相同的合同不是600万元”,乙看了丙的供货合同说:“我与丙的供货合同中金额相同的合同不是300万元”,丙说:“我的两个供货合同中金额之和不是1500万元”,则甲签订的两个供货合同中金额之和是( )
A.900万B.1500万元C.不能确定D.1200万元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设是正整数.在一个十进制位数的各位数字中,若含有数字8,则在每个数字8的前一位数字就不能是数字3(即不能出现38字样).试求出所有这样的位数的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在15-65岁的人群中随机调查100人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:
年龄 | |||||
支持“延迟退休”的人数 | 15 | 5 | 15 | 28 | 17 |
(1)由以上统计数据填2×2列联表,并判断能否在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异;
45岁以下 | 45岁以上 | 总计 | |
支持 | |||
不支持 | |||
总计 |
参考数据:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
,其中.
(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动、现从这8人中随机抽2人.记抽到45岁以上的人数为X,求随机变量X的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“吸烟有害健康,吸烟会对身体造成伤害”,哈尔滨市于2012年5月31日规定室内场所禁止吸烟.美国癌症协会研究表明,开始吸烟年龄X分别为16岁、18岁、20岁和22岁者,其得肺癌的相对危险度Y依次为15.10,12.81,9.72,3.21;每天吸烟支数U分别为10,20,30者,其得肺癌的相对危险度V分别为7.5,9.5和16.6,用表示变量X与Y之间的线性相关系数,用r2表示变量U与V之间的线性相关系数,则下列说法正确的是( )
A.r1=r2B.r1>r2>0
C.0<r1<r2D.r1<0<r2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,已知圆C的圆心,半径r=3.
(1)求圆C的极坐标方程;
(2)若Q点在圆C上运动,P在OQ的延长线上,且,求动点P的轨迹的极坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的直角坐标方程与直线的普通方程;
(2)直线与曲线交于两点,记弦的中点为,点,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费 (单位:千元)对年销售量 (单位: )和年利润 (单位:千元)的影响.对近年的年宣传费 和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.
表中 , .附:对于一组数据 , , , ,其回归直线 的斜率和截距的最小二乘法估计分别为 , .
(1)根据散点图判断, 与 在哪一个适宜作为年销售量 关于年宣传费 的回归方程类型?(给出判断即可,不必说明理由)
(2)根据1小问的判断结果及表中数据,建立 关于 的回归方程;
(3)已知这种产品的年利润 与 的关系为 .根据2小问的结果回答下列问题:
①2年宣传费 时,年销售量及年利润的预报值是多少?
②3年宣传费为何值时,年利润的预报值最大?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com