精英家教网 > 高中数学 > 题目详情
a
b
c
是任意的非零平面向量,且相互不共线,则
①(
a
b
c
=(
c
a
b

②|
a
|-|
b
|>|
a
-
b
|;
③(
b
c
) 
a
-(
c
a
b
c
垂直;
④(3
a
+2
b
)•(3
a
-2
b
)=9|
a
|2-4|
b
|2中,是真命题的有(  )
A、①②B、②③C、③④D、②④
考点:平面向量数量积的运算
专题:平面向量及应用
分析:结合平面向量的运算和位置关系进行逐个验证即可.
解答: 解:对于①:
∵(
a
b
c
表示与向量
c
共线的向量,
而(
c
a
b
则表示与向量
b
共线的向量;
故①错误;
对于②:当|
a
|<|
b
|时,则原不等式不成立,
故②错误;
对于③:[(
b
c
) 
a
-(
c
a
b
]•
c
=0;
∴(
b
c
) 
a
-(
c
a
b
c
垂直;
对于④:结合向量的运算律,得到
(3
a
+2
b
)•(3
a
-2
b
)=9|
a
|2-4|
b
|2
故④正确;
故选:C.
点评:本题重点考查了平面向量的运算与性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设正整数a、b、c(a≤b≤c)和实数x、y、z、ω满足:ax=by=cz=30ω
1
x
+
1
y
+
1
z
=
1
ω
,求a、b、c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=sin2x-
1
2
(x∈R),则f(x)是(  )
A、最小正周期为
π
2
的奇函数
B、最小正周期为π的奇函数
C、最小正周期为2π的偶函数
D、最小正周期为π的偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x2-2ax+b,当时x=-1时,f(x)取最小值-8,记集合A={x|f(x)>0},B={x||x-t|≤1}
(Ⅰ)当t=1时,求(∁RA)∪B;
(Ⅱ)设命题P:A∩B≠∅,若¬P为真命题,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体ABCD-A1B1C1D1中,AA1=2,E为棱CC1的中点.
(1)求三棱锥E-ABD的体积;
(2)求证:B1D1⊥AE;
(3)求证:AC∥平面B1DE.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理做)已知函数f(x)=
1
x-1
-lnx,函数y=f(|x|)的零点个数为n,则n=(  )
A、2B、4C、6D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中为假命题的是(  )
A、?x∈R,logax=-1(a>0,a≠1)
B、?x∈R,tanx=2014
C、?x∈R,ax>0(a>0,a≠1)
D、?x∈R,x2+ax+a2>0(a∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn为数列{an}的前n项之和,若不等式n2an2+4Sn2≥λn2a12对任何等差数列{an}及任何正整数n恒成立,则λ的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:p:x≥k,q:
2-x
x+1
<0,如果p是q的充分不必要条件,则k的取值范围是(  )
A、[2,+∞)
B、(2,+∞)
C、[1,+∞)
D、(-∞,-1]

查看答案和解析>>

同步练习册答案