精英家教网 > 高中数学 > 题目详情

【题目】已知函数

讨论函数的单调性;

时,求函数在区间上的零点个数.

【答案】(1)见解析;(2)见解析

【解析】

1)先对函数求导,分别讨论,即可得出结果;

(2)先由(1)得时,函数的最大值,分别讨论,即可结合题中条件求出结果.

解:(1)

时,

时,

时,;当时,

时,上单调递减;

时,上单调递增,上单调递减.

(2)由(1)得

,即时,函数内有无零点;

,即时,函数内有唯一零点

,所以函数内有一个零点;

,即时,由于

,即时,,由函数单调性知

使得使得,

故此时函数内有两个零点;

,即时,

由函数的单调性可知内有唯一的零点,在内没有零点,从而内只有一个零点

综上所述,当时,函数内有无零点;

时,函数内有一个零点;

时,函数内有两个零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一半径为的水轮,水轮圆心距离水面2,已知水轮每分钟转动(按逆时针方向)3圈,当水轮上点从水中浮现时开始计时,即从图中点开始计算时间.

(1)当秒时点离水面的高度_________

(2)将点距离水面的高度(单位: )表示为时间(单位: )的函数,则此函数表达式为_______________ .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业通过调查问卷(满分50分)的形式对本企业900名员工的工作满意度进行调查,并随机抽取了其中30名员工(其中16名女员工,14名男员工)的得分,如下表:

47 36 32 48 34 44 43 47 46 41 43 42 50 43 35 49

37 35 34 43 46 36 38 40 39 32 48 33 40 34

)现求得这30名员工的平均得分为40.5分,若规定大于平均得分为满意,否则为不满意,请完成下列表格:

“满意”的人数

“不满意”的人数

合计

16

14

合计

30

)根据上述表中数据,利用独立性检验的方法判断,能否在犯错误的概率不超过1%的前提下,认为该企业员工“性别”与“工作是否满意”有关?

参考数据:

0.10

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为直角梯形,试作出绕其各条边所在的直线旋转所得到的几何体.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为实数,已知

1)若函数,求的值;

2)当时,求证:函数上是单调递增函数;

3)若对于一切,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,其左顶点在圆上.

(1)求椭圆的方程;

(2)若点为椭圆上不同于点 的点,直线与圆的另一个交点为.是否存在点,使得?若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形和梯形所在的平面互相垂直,.

(1)若的中点,求证:平面

(2)若,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点为极点,以轴的正半轴为极轴,且两个坐标系取相等的长度单位,已知直线的参数方程为为参数,),曲线的极坐标方程为

(1)若,求直线的普通方程和曲线的直角坐标方程;

(2)设直线与曲线相交于两点,当变化时,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修44:坐标系与参数方程]

在平面直角坐标系中,倾斜角为的直线的参数方程为

为参数).以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标

方程是.

(1)写出直线的普通方程和曲线的直角坐标方程;

(2)已知点.若点的极坐标为,直线经过点且与曲线相交于两点,求两点间的距离的值.

查看答案和解析>>

同步练习册答案