精英家教网 > 高中数学 > 题目详情
16.已知球O的半径为R,体积为V,则“R>$\sqrt{10}$”是“V>36π”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也必要条件

分析 利用球的体积计算公式与不等式的性质、充要条件的性质即可判断出结论.

解答 解:∵R>$\sqrt{10}$,∴$V=\frac{4π}{3}{R}^{3}$>$\frac{4π}{3}×(\sqrt{10})^{3}$=$\frac{40\sqrt{10}π}{3}$>36π.
∴“R>$\sqrt{10}$”是“V>36π”的充分不必要条件.
故选:A.

点评 本题考查了球的体积计算公式与不等式的性质、充要条件的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.为调查运城市学生百米运动成绩,从该市学生中按照男女比例随机抽取50名学生进行百米测试,学生成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组[13,14),第二组[14,15)…第五组[17,18],如图是按上述分组方法得到的频率分布直方图.
(Ⅰ)求这组数据的中位数(精确到0.1)
(Ⅱ)根据有关规定,成绩小于16秒为达标.如果男女生使用相同的达标标准,则男女生达标情况如表:
性别
是否达标
合计
达标a=24b=630
不达标c=8d=1220
合计3218
根据表中所给的数据,能否有99%的把握认为“体育达标与性别有关”?若有,你能否提出一个更好的解决方法来?
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥K)0.0500.0100.001
K3.8416.62510.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若x∈(1,+∞),则y=2x+$\frac{1}{x-1}$的最小值是2$\sqrt{2}$+2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知圆C1:x2+y2=4和圆2:(x-a)2+y2=4,其中a是在区间(0,6)上任意取得一个实数,那么圆C1和圆C2相交且公共弦长小于2$\sqrt{3}$的概率为(  )
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知圆M的圆心在直线x+y=0上,半径为1,直线l:6x-8y-9=0被圆M截得的弦长为$\sqrt{3}$,且圆心M在直线l的右下方.
(1)求圆M的标准方程;
(2)直线mx+y-m+1=0与圆M交于A,B两点,动点P满足|PO|=$\sqrt{2}$|PM|(O为坐标原点),试求△PAB面积的最大值,并求出此时P点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,内角A,B,C的对边分别是a,b,c,已知2sin2A+sin2B=sin2C.
(1)若b=2a=4,求△ABC的面积;
(2)求$\frac{{c}^{2}}{ab}$的最小值,并确定此时$\frac{c}{a}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右顶点分别为A,B,离心率为$\frac{\sqrt{2}}{2}$,直线x=-a与y=b交于点D,且|BD|=3$\sqrt{2}$,过点B作直线l交直线x=-a于点M,交椭圆于另一点P.
(1)求直线MB与直线PA的斜率之积;
(2)证明:$\overrightarrow{OM}$•$\overrightarrow{OP}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=$\frac{|x|}{\sqrt{1+{x}^{2}}\sqrt{4+{x}^{2}}}$的最大值为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设α,β是两个不同的平面,l是一条直线,以下命题正确的是(  )
A.若α∥β,l∥α,则l?βB.若α∥β,l⊥α,则 l⊥β
C.若α⊥β,l⊥α,则l?βD.若α⊥β,l∥α,则 l⊥β

查看答案和解析>>

同步练习册答案