精英家教网 > 高中数学 > 题目详情

如图,三棱柱ABCA1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.

(1)证明:AB⊥A1C;
(2)若AB=CB=2,A1C=,求三棱柱ABCA1B1C1的体积.

(1)见解析   (2)3

解析(1)证明:取AB的中点O,连接OC,OA1,A1B.

因为CA=CB,所以OC⊥AB.
由于AB=AA1,∠BAA1=60°,
故△AA1B为等边三角形,
所以OA1⊥AB.
因为OC∩OA1=O,
所以AB⊥平面OA1C.
又A1C?平面OA1C,故AB⊥A1C.
(2)解:由题设知△ABC与△AA1B都是边长为2的等边三角形,所以OC=OA1=.
又A1C=,则A1C2=OC2+O,故OA1⊥OC.
因为OC∩AB=O,所以OA1⊥平面ABC,OA1为三棱柱ABCA1B1C1的高.
又△ABC的面积S△ABC=,故三棱柱ABCA1B1C1的体积V=S△ABC×OA1=3.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,已知正方形的边长为,点分别在边上,,现将△沿线段折起到△位置,使得

(1)求五棱锥的体积;
(2)求平面与平面的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的多面体中,已知正三棱柱ABCA1B1C1的所有棱长均为2,四边形ABDC是菱形.

(1)求证:平面ADC1⊥平面BCC1B1
(2)求该多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,圆锥的轴截面为等腰直角为底面圆周上一点.

(1)若的中点为,求证平面
(2)如果,,求此圆锥的全面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一个几何体的三视图如下图所示,已知正(主)视图是底边长为1的平行四边形,侧(左)视图是一个长为,宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.

(1)求该几何体的体积V
(2)求该几何体的表面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝.再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).

(1)当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到0.01平方米).
(2)若要制作一个如图放置的、底面半径为0.3米的灯笼,请作出灯笼的三视图(作图时,不需考虑骨架等因素).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一个几何体是由圆柱和三棱锥组合而成,点在圆的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图4所示,其中

(1)求证:
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,底面是菱形,的中点,点在侧棱上.

(1)求证:⊥平面
(2)若的中点,求证://平面
(3)若,试求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在四棱锥P-ABCD中,△PBC为正三角形,PA⊥底面ABCD,其三视图如图所示,俯视图是直角梯形.
 
(1)求正视图的面积;
(2)求四棱锥P-ABCD的体积.

查看答案和解析>>

同步练习册答案