精英家教网 > 高中数学 > 题目详情
已知
a
=(cosα,sinα),
b
=(cosβ,sinβ),则(  )
分析:由向量的坐标运算,对四个选项逐一运算,即可得到正确结论.
解答:解:由于
a
=(cosα,sinα),
b
=(cosβ,sinβ),
a
b
=cosαcosβ+sinαsinβ=cos(α-β)≠0,故A错;
而cosαsinβ-sinαcosβ=sin(β-α)≠0,故B错;
由于
a
+
b
=(cosα+cosβ,sinα+sinβ),
a
-
b
=(cosα-cosβ,sinα-sinβ)
则(
a
+
b
)•(
a
-
b
)=(cosα+cosβ)•(cosα-cosβ)+(sinα+sinβ)•(sinα-sinβ)
=(cos2α-cos2β)+(sin2α-sin2β)=0,故(
a
+
b
)⊥(
a
-
b
),即C正确;
由于cosθ=
a
b
|
a
|•|
b
|
=
a
b
=cos(α-β)≠cos(α+β),故D错.
故答案为 C
点评:本题以向量为载体,考查向量的坐标运算,考查三角恒等变换,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义平面向量之间的一种运算“⊙”如下:对任意的向量a=(m,n),b=(p,q),令a⊙b=(m+p,n-q),已知a=(cosθ,3),b=(sinθ,3+
2
sinθ)
(θ∈R),点N(x,y)满足
ON
=a⊙b(其中O为坐标原点),则|
ON
|2
的最大值为(  )
A、
2
B、2+
2
C、2-
2
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(cosα,sinα),
b
=(cosβ,sinβ),其中0<α<β<π.
(1)求证:
a
+
b
a
-
b
互相垂直;
(2)若k
a
+
b
与k
a
-
b
大小相等,求β-α(k≠0).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(cosα,sinα),
b
=(cosβ,sinβ).
(1)若α-β=
6
,求
a
b
的值;
(2)若
a
b
=
4
5
,α=
π
8
,且α-β∈(-
π
2
,0)
,求tan(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2005•朝阳区一模)已知
a
=(cosα,sinα),
b
=(cosβ,sinβ),0<α<β<π
(Ⅰ)求|
a
|的值;
(Ⅱ)求证:
a
+
b
a
-
b
互相垂直;
(Ⅲ)设|
a
+
b
|=|
a
-
b
|,求β-α的值.

查看答案和解析>>

同步练习册答案