4£®Ê×½ìÊÀ½çµÍ̼¾­¼Ã´ó»áÔÚÄϲýÕÙ¿ª£¬±¾½ì´ó»áÒÔ¡°½ÚÄܼõÅÅ£¬ÂÌÉ«Éú̬¡±ÎªÖ÷Ì⣮ijµ¥Î»ÔÚ¹ú¼Ò¿ÆÑв¿ÃŵÄÖ§³ÖÏ£¬½øÐм¼Êõ¹¥¹Ø£¬²ÉÓÃÁËй¤ÒÕ£¬°Ñ¶þÑõ»¯Ì¼×ª»¯ÎªÒ»ÖÖ¿ÉÀûÓõĻ¯¹¤²úÆ·£®ÒÑÖª¸Ãµ¥Î»Ã¿ÔµĴ¦ÀíÁ¿×îÉÙΪ300¶Ö£¬×î¶àΪ600¶Ö£¬Ô´¦Àí³É±¾y£¨Ôª£©ÓëÔ´¦ÀíÁ¿x£¨¶Ö£©Ö®¼äµÄº¯Êý¹Øϵ¿É½üËƵرíʾΪ$y=\frac{1}{2}{x^2}-200x+45000$£¬ÇÒÿ´¦ÀíÒ»¶Ö¶þÑõ»¯Ì¼µÃµ½¿ÉÀûÓõĻ¯¹¤²úÆ·¼ÛֵΪ200Ôª£®
£¨1£©¸Ãµ¥Î»Ã¿Ô´¦ÀíÁ¿Îª¶àÉÙ¶Öʱ£¬²ÅÄÜʹÿ¶ÖµÄƽ¾ù´¦Àí³É±¾×îµÍ£¿
£¨2£©¸Ãµ¥Î»Ã¿ÔÂÄÜ·ñ»ñÀû£¿Èç¹û»ñÀû£¬Çó³ö×î´óÀûÈó£»Èç¹û²»»ñÀû£¬ÔòÐèÒª¹ú¼ÒÖÁÉÙ²¹Ìù¶àÉÙÔª²ÅÄÜʹ¸Ãµ¥Î»²»¿÷Ëð£¿

·ÖÎö £¨1£©ÓÉÌâÒâÔ´¦Àí³É±¾y£¨Ôª£©ÓëÔ´¦ÀíÁ¿x£¨¶Ö£©Ö®¼äµÄº¯Êý¹Øϵ¿É½üËƵıíʾΪ£ºy=$\frac{1}{2}$x2-200x+45000£¬Á½±ßͬʱ³ýÒÔx£¬È»ºóÀûÓûù±¾²»µÈʽ´Ó¶øÇó³ö×îÖµ£»
£¨2£©Éè¸Ãµ¥Î»Ã¿Ô»ñÀûΪS£¬ÔòS=200x-y£¬°ÑyÖµ´úÈë½øÐл¯¼ò£¬È»ºóÔËÓÃÅä·½·¨½øÐÐÇó½â

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉÖª£¬Ô´¦Àí³É±¾y£¨Ôª£©ÓëÔ´¦ÀíÁ¿x£¨¶Ö£©Ö®¼äµÄº¯Êý¹Øϵ¿É½üËƵرíʾΪ$y=\frac{1}{2}{x^2}-200x+45000$£¬
¡à¶þÑõ»¯Ì¼Ã¿¶ÖµÄƽ¾ù´¦Àí³É±¾Îª$\frac{y}{x}=\frac{1}{2}x+\frac{45000}{x}-200$$¡Ý2\sqrt{\frac{1}{2}x•\frac{45000}{x}}-200=100$£¬-----------------£¨4·Ö£©
µ±ÇÒ½öµ±$\frac{1}{2}$x=$\frac{45000}{x}$£¬¼´x=300ʱµÈºÅ³ÉÁ¢£¬-------------------£¨5·Ö£©
¹Ê¸Ãµ¥Î»Ô´¦ÀíÁ¿Îª300¶Öʱ£¬²ÅÄÜʹÿ¶ÖµÄƽ¾ù´¦Àí³É±¾×îµÍ£¬×îµÍ³É±¾Îª100Ôª£®----------------------------£¨6·Ö£©
£¨2£©¸Ãµ¥Î»Ã¿ÔÂÄÜ»ñÀû£®
Éè¸Ãµ¥Î»Ã¿Ô»ñÀûΪSÔª£¬Ôò
S=200x-y=-$\frac{1}{2}$x2+400x-45000=-$\frac{1}{2}$£¨x-400£©2+35 000£¬--------------£¨9·Ö£©
ÒòΪx¡Ê[300£¬600]£¬ËùÒÔS¡Ê[15 000£¬35 000]£®-----------------£¨11·Ö£©
¹Ê¸Ãµ¥Î»Ã¿Ô»ñÀû£¬×î´óÀûÈóΪ35000Ôª£®-----------------------£¨12·Ö£©

µãÆÀ ´ËÌâÊÇÒ»µÀʵ¼ÊÓ¦ÓÃÌ⣬¿¼²éÁ˺¯ÊýµÄ×îÖµºÍ»ù±¾²»µÈʽ£¬¼°ÔËÓÃÅä·½·¨Çóº¯ÊýµÄ×îÖµ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Éèa=sin$\frac{3¦Ð}{5}$£¬b=cos$\frac{2¦Ð}{5}$£¬c=tan$\frac{2¦Ð}{5}$£¬Ôò£¨¡¡¡¡£©
A£®b£¼a£¼cB£®b£¼c£¼aC£®a£¼b£¼cD£®a£¼c£¼b

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑ֪˫ÇúÏßµÄÖÐÐÄÔÚÔ­µã£¬½¹µãF1£¬F2ÔÚ×ø±êÖáÉÏ£¬ÀëÐÄÂÊΪ$\sqrt{2}$£¬ÇÒ¹ýµã£¨4£¬-$\sqrt{10}$£©£¬µãM£¨3£¬m£©ÔÚË«ÇúÏßÉÏ£®
£¨1£©ÇóË«ÇúÏß·½³Ì£»
£¨2£©ÇóÖ¤£ºMF1¡ÍMF2£»
£¨3£©´ÓË«ÇúÏßµÄ×ó½¹µãF1ÒýÒÔÔ­µãΪԲÐÄ£¬Êµ°ëÖ᳤Ϊ°ë¾¶µÄÔ²µÄÇÐÏߣ¬ÇóÇÐÏßÓëË«ÇúÏߵĽ»µã×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖª¶¨ÒåÓòΪRµÄº¯Êýf£¨x£©ÒÔ4ΪÖÜÆÚ£¬ÇÒº¯Êýf£¨x£©=$\left\{\begin{array}{l}{\sqrt{1-{x}^{2}}£¬x¡Ê£¨-1£¬1]}\\{2-|x-2|£¬x¡Ê£¨1£¬3]}\end{array}\right.$£¬ÈôÂú×㺯Êýg£¨x£©=f£¨x£©-mx£¨m£¾0£©Ç¡ÓÐ5¸öÁãµã£¬ÔòmµÄÈ¡Öµ·¶Î§Îª£¨¡¡¡¡£©
A£®£¨$\frac{\sqrt{15}}{15}$£¬$\frac{1}{3}$£©B£®[$\frac{1}{5}$£¬$\frac{\sqrt{15}}{15}$£©C£®£¨$\frac{1}{5}$£¬$\frac{\sqrt{15}}{15}$]D£®£¨$\frac{1}{7}$£¬$\frac{1}{5}$]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÉèÕýÏîµÈ²îÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬ÆäÖÐa1¡Ùa2£®am¡¢ak¡¢anÊÇÊýÁÐ{an}ÖÐÂú×ãan-ak=ak-amµÄÈÎÒâÏ
£¨1£©ÇóÖ¤£ºm+n=2k£»
£¨2£©Èô$\sqrt{{S}_{m}}$£¬$\sqrt{{S}_{k}}$£¬$\sqrt{{S}_{n}}$Ò²³ÉµÈ²îÊýÁУ¬ÇÒa1=1£¬ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©ÇóÖ¤£º$\frac{1}{{S}_{m}}$+$\frac{1}{{S}_{n}}$¡Ý$\frac{2}{{S}_{k}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®Ò»¸öˮƽ·ÅÖõÄƽÃæͼÐεÄб¶þ²âÖ±¹ÛͼÊÇÖ±½ÇÌÝÐÎABCD£¬ÈçͼËùʾ£¬¡ÏABC=45¡ã£¬$AB=AD=\sqrt{2}$£¬DC¡ÍBC£¬Õâ¸öƽÃæͼÐεÄÃæ»ýΪ$4+\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªf£¨x£©=$\sqrt{3}sin£¨2x+\frac{¦Ð}{3}£©-2{cos^2}x+\frac{3}{2}$£®
£¨¢ñ£©Çóº¯Êýf£¨x£©µÄµ¥µ÷ÔöÇø¼ä£»
£¨¢ò£©ÔÚ¡÷ABCÖУ¬a£¬b£¬c·Ö±ðΪ¡÷ABCÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß£¬ÇÒa=1£¬b+c=2£¬f£¨A£©=1£¬Çó¡÷ABCµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªº¯Êýf£¨x£©=log9£¨9x+1£©+kx£¨k¡ÊR£©ÊÇżº¯Êý£®
£¨1£©ÇókµÄÖµ£»
£¨2£©Èôº¯Êýy=f£¨x£©µÄͼÏóÓëÖ±Ïßy=$\frac{1}{2}$x+bûÓн»µã£¬ÇóbµÄÈ¡Öµ·¶Î§£»
£¨3£©Éèh£¨x£©=f£¨x£©-log9£¨a•3x-$\frac{4}{3}$a£©£¬Èôº¯Êýh£¨x£©ÓÐÇÒÖ»ÓÐÒ»¸öÁãµã£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÉèABΪ¹ýÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÓÒ½¹µãFÈÎÒâÒ»ÌõÏÒ£¬ÈôMµãÔÚxÖáÉÏÇÒÖ±ÏßMFΪ¡ÏAMBµÄƽ·ÖÏߣ¬Ôò³ÆMΪ¸ÃÍÖÔ²µÄ¡°Óҷֵ㡱£®
£¨1£©ÈôÍÖÔ²EµÄÀëÐÄÂÊΪ$\frac{1}{2}$£¬ÓÒ½¹µãµ½ÓÒ×¼ÏߵľàÀëΪ3£¬Çó£º
¢ÙÍÖÔ²EµÄ·½³Ì£»
¢Ú¡°Óҷֵ㡱MµÄ×ø±ê£»
£¨2£©²ÂÏëÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©¡°Óҷֵ㡱MµÄλÖ㬲¢Ö¤Ã÷ÄãµÄ²ÂÏ룮

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸