精英家教网 > 高中数学 > 题目详情

【题目】给出下面四个推理:

①由“若是实数,则”推广到复数中,则有“若是复数,则”;

②由“在半径为R的圆内接矩形中,正方形的面积最大”类比推出“在半径为R的球内接长方体中,正方体的体积最大”;

③以半径R为自变量,由“圆面积函数的导函数是圆的周长函数”类比推出“球体积函数的导函数是球的表面积函数”;

④由“直角坐标系中两点的中点坐标为”类比推出“极坐标系中两点的中点坐标为”.

其中,推理得到的结论是正确的个数有( )个

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】分析:根据题意,利用类比推理的概念逐一判定,即可得到结论

详解:由题意,对于①中,根据复数的表示和复数的几何意义,可知“若复数,则”是正确的;

对于②中,根据平面与空间的类比推理可得:“在半径为的球内接长方体中,正方体的体积最大”是正确的;

对于中,由球的体积公式为,其表面积公式为,所以,所以是正确的;

对于中,如在极坐标系中,点,此时的中点坐标为,不满足“极坐标系中两点的中点坐标为”,所以不正确,

综上,正确命题的个数为三个,故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知M( ,0),N(2,0),曲线C上的任意一点P满足: = | |.
(Ⅰ)求曲线C的方程;
(Ⅱ)设曲线C与x轴的交点分别为A、B,过N的任意直线(直线与x轴不重合)与曲线C交于R、Q两点,直线AR与BQ交于点S.问:点S是否在同一直线上?若是,请求出这条直线的方程;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲乙两名篮球运动员分别在各自不同的5场比赛所得篮板球数的茎叶图如图所示,已知两名运动员在各自5场比赛所得平均篮板球数均为10.

(1)求x,y的值;

(2)求甲乙所得篮板球数的方差,并指出哪位运动员篮板球水平更稳定;

(3)教练员要对甲乙两名运动员篮板球的整体水平进行评估.现在甲乙各自的5场比赛中各选一场进行评估,则两名运动员所得篮板球之和小于18的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC﹣A1B1C1中,AB⊥平面BB1C1C,∠BCC1= ,AB=BB1=2,BC=1,D为CC1中点.
(1)求证:DB1⊥平面ABD;
(2)求二面角A﹣B1D﹣A1的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为( ) (参考数据: ≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)

A.12
B.24
C.36
D.48

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an},{bn}满足 ,其中n∈N+ . (I)求证:数列{bn}是等差数列,并求出数列{an}的通项公式;
(II)设 ,求数列{cncn+2}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P为函数f(x)=lnx的图象上任意一点,点Q为圆[x﹣(e+ )]2+y2=1任意一点,则线段PQ的长度的最小值为(
A.
B.
C.
D.e+ ﹣1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥E﹣ABCD中,平面EAD⊥平面ABCD,DC∥AB,BC⊥CD,EA⊥ED,且AB=4,BC=CD=EA=ED=2.
(1)求证:BD⊥平面ADE;
(2)求直线BE和平面CDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=lnx+ +ax(a∈R),g(x)=ex+
(1)讨论f(x)的极值点的个数;
(2)若对于x>0,总有f(x)≤g(x).(i)求实数a的取值范围;(ii)求证:对于x>0,不等式ex+x2﹣(e+1)x+ >2成立.

查看答案和解析>>

同步练习册答案