精英家教网 > 高中数学 > 题目详情
已知函数
(1)求的极值;
(2)当时,求的值域;
(3)设,函数,若对于任意,总存在,使得成立,求的取值范围.
(1),无极小值(2)(3)

试题分析:⑴,令,解得: (舍)或
时,;当时,
,无极小值.
⑵由⑴知在区间单调递增,在区间的值域为,即
在区间单调递减,在区间的值域为,即
又对于任意,总存在,使得成立在区间的值域在区间的值域,即
,解得:
点评:求函数极值最值的步骤:函数在定义域内求导数,取导数等于零得到极值点,判定极值点两侧附近函数的单调性从而确定是极大值还是极小值,求出区间端点处函数值与极值比较可得出最值
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知函数在R上可导,且,则的大小关系是(   )
A.f (-1 ) =" f" ( 1 )B.f (-1 ) < f ( 1 )
C.f (-1) > f ( 1 )D.不能确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数的定义域为,满足且函数为偶函数,,则实数的大小关系是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数上单调递减,则的取值范围是     

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数f (x)=x3-4xa,0<a<2.若f (x)的三个零点为x1x2x3,且x1x2x3,则
A.x1>-1B.x2<0C.x2>0D.x3>2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的单调递增区间是            

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数, 其中,的导函数.
(Ⅰ)若,求函数的解析式;
(Ⅱ)若,函数的两个极值点为满足. 设, 试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
已知函数
(1)当时,判断在定义域上的单调性;
(2)求上的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分16分)
已知函数.
(1)当时,若函数在区间上是单调增函数,试求的取值范围;
(2)当时,直接写出(不需给出演算步骤)函数 ()的单调增区间;
(3)如果存在实数,使函数)在
 处取得最小值,试求实数的最大值.

查看答案和解析>>

同步练习册答案