分析 (1)f(x)=ax2-2x+1的对称轴为x=$\frac{1}{a}$,由$\frac{1}{3}$≤a≤1,知1≤$\frac{1}{a}$≤3,结合函数的单调性判断即可;
(2)由a的符号进行分类讨论,能求出M(a)-N(a)的解析式,从而求出其最小值即可.
解答 解:(1)f(x)=ax2-2x+1的对称轴为x=$\frac{1}{a}$,
∵$\frac{1}{3}$≤a≤1,∴1≤$\frac{1}{a}$≤3,
∴f(x)在[1,$\frac{1}{a}$)递减,在($\frac{1}{a}$,3]递增,
∴f(x)在[1,3]上,所以$f{(x)_{min}}=f({\frac{1}{a}})=1-\frac{1}{a}$;
(2)∵f(x)=ax2-2x+1在区间[1,3]上的最大值为M(a),最小值为N(a),
∴①当1≤$\frac{1}{a}$≤2,即$\frac{1}{2}$≤a≤1时,
M(a)=f(3)=9a-5,N(a)=f($\frac{1}{a}$)=1-$\frac{1}{a}$.
∴M(a)-N(a)=9a+$\frac{1}{a}$-6.
②当2<$\frac{1}{a}$≤3,即$\frac{1}{3}$≤a<$\frac{1}{2}$时,
M(a)=f(1)=a-1,N(a)=f($\frac{1}{a}$)=1-$\frac{1}{a}$
∴M(a)-N(a)=a+$\frac{1}{a}$-2,
∴$M(a)-N(a)=\left\{{\begin{array}{l}{a+\frac{1}{a}-2,a∈[{\frac{1}{3},\frac{1}{2}}]}\\{9a+\frac{1}{a}-6,a∈({\frac{1}{2},1}]}\end{array}}\right.$,
当$a∈[{\frac{1}{3},\frac{1}{2}}]$时,最小值为$\frac{1}{2}$,
当$a∈({\frac{1}{2},1}]$时,最小值也是$\frac{1}{2}$,
综上,M(a)-N(a)的最小值为$\frac{1}{2}$.
点评 本题考查函数的解析式的求法,解题时要认真审题,仔细解答,注意分类讨论思想的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-2,2) | B. | (5,7) | C. | (3,5) | D. | (1,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ($\frac{1}{4}$,1) | B. | (1,4) | C. | (1,8) | D. | (8,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com