精英家教网 > 高中数学 > 题目详情
若函数f(x)=
1
3
x3-
1
2
ax2+(a-1)x+1在区间(1,4)内为减函数,在区间(6,+∞)上为增函数,试求实数a的取值范围.
分析:先求导数fˊ(x),在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,这是一道求函数的单调性的逆向思维问题.本题的关键是比较极值和端点处的函数值的大小,分类讨论解题一目了然,从而确定出a的范围.
解答:解:函数f(x)的导数f′(x)=x2-ax+a-1.
令f′(x)=0,解得x=1或x=a-1.
当a-1≤1,即a≤2时,函数f(x)在(1,+∞)上为增函数,不合题意.
当a-1>1,即a>2时,函数f(x)在(-∞,1)上为增函数,
在(1,a-1)内为减函数,在(a-1,+∞)上为增函数.
依题意应有
当x∈(1,4)时,f′(x)<0,
当x∈(6,+∞)时,f′(x)>0.
所以4≤a-1≤6,解得5≤a≤7.
所以a的取值范围是[5,7].
点评:本题考查了利用导数就函数的单调区间,以及求函数的单调性的逆向思维问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=
(
1
3
)
x
,x∈[-1,0]
3x,x∈[0,1]
则f(log3
1
2
)
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列五种说法:
①函数y=f(-x+2)与y=f(x-2)的图象关于y轴对称;
②函数y=(
1
2
)x2+2x
的值域是[2,+∞);
③若函数f(x)=log2|x|(a>0,a≠1)在(0,+∞)上单调递增,则f(-2)>f(a+1);
④若f(x)=
(3a-1)x+4a,(x<1)
logax,(x≥1)
是(-∞,+∞)上的减函数,则a的取值范围是(0,
1
3
);
⑤设方程 2-x=|lgx|的两个根为x1,x2,则  0<x1x2<1.
其中正确说法的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
1
3-x-1
+a是奇函数,则实数a的值为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数f(x)=
(
1
3
)
x
,x∈[-1,0]
3x,x∈[0,1]
则f(log3
1
2
)
=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数f(x)=
1
3-x-1
+a是奇函数,则实数a的值为(  )
A.
1
2
B.-
1
2
C.2D.-2

查看答案和解析>>

同步练习册答案