精英家教网 > 高中数学 > 题目详情

【题目】(题文)在平面直角坐标系中,椭圆的长轴长,短轴长

(1)求椭圆的方程;

(2)记椭圆的左右顶点,分别过轴的垂线交直线于点 椭圆上位于轴上方的动点,直线分别交直线于点

(i)当直线的斜率为2时,求的面积;

(ii)求的最小值

【答案】(1);(2)

【解析】

(1)直接利用已知求出ab即得椭圆的方程.(2) (i)先求出点E,F的坐标,再求|EF|,再求的面积. (ii)先分别求DE,CF,再求再利用基本不等式求的最小值

(1)由题得,所以椭圆的方程为

(2)(1)

,则,直线的方程为

,得

直线的方程为,令,得

(i)当直线的斜率为时,有,消去并整理得,

解得(舍),

所以的面积

(ii),

所以

所以DE+CF.

所以对任意的动点的最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在同一坐标系中,函数y=ax+ay=ax的图象大致是(  )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: (a>b>0)的离心率为 ,直线l:y=x+2与以原点为圆心、椭圆C的短半轴为半径的圆O相切.
(1)求椭圆C的方程;
(2)过椭圆C的左顶点A作直线m,与圆O相交于两点R,S,若△ORS是钝角三角形,求直线m的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱台ABC﹣A1B1C1中,CC1⊥平面ABC,AB=2A1B1=2CC1 , M,N分别为AC,BC的中点.
(1)求证:AB1∥平面C1MN;
(2)若AB⊥BC且AB=BC,求二面角C﹣MC1﹣N的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数上的单调减函数,已知,且在定义域内恒成立,则实数的取值范围为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中,正确的是 ( )
A.当x>0且x≠1时,
B.当x>0时,
C.当x≥2时,的最小值为2
D.当0<x≤2时,无最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求B点在AM上,D点在AN上,且对角线MN过点C,已知AB=2米,AD=1米.

(1)要使矩形AMPN的面积大于9平方米,则DN的长应在什么范围内?

(2)当DN的长度为多少时,矩形花坛AMPN的面积最小?并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,则满足f(f(a))=2f(a)a的取值范围是(  )

A. B. [0,1]

C. D. [1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点, 轴的正半轴为极轴建立极坐标系,已知曲线:,已知过点的直线的参数方程为: (为参数),直线与曲线分别交于两点.

(1)写出曲线和直线的普通方程;

(2)若,,成等比数列,求的值.

查看答案和解析>>

同步练习册答案