【题目】如图所示,在棱长为4的正方体中,点M是正方体表面上一动点,则下列说法正确的个数为( )
①若点M在平面ABCD内运动时总满足,则点M在平面ABCD内的轨迹是圆的一部分;
②在平面ABCD内作边长为1的小正方形EFGA,点M满足在平面ABCD内运动,且到平面的距离等于到点F的距离,则M在平面ABCD内的轨迹是抛物线的一部分;
③已知点N是棱CD的中点,若点M在平面ABCD内运动,且平面,则点M在平面内的轨迹是线段;
④已知点P、Q分别是,的中点,点M为正方体表面上一点,若MP与CQ垂直,则点M所构成的轨迹的周长为.
A.1B.2C.3D.4
【答案】D
【解析】
对于①,结合圆锥的性质,可判断其正确;对于②,结合抛物线的定义,可知其正确;对于③,取AB的中点I,BC的中点O,易证平面平面,可知当M在线段IO上时,满足题意;对于④,只需过点P作直线CQ的垂面即可,垂面与正方体表面的交线即为动点M的轨迹,求出周长,即可判断④正确.
对于①,因为满足条件的动点M是以为轴线,以为母线的圆锥与平面ABCD的交线,即圆的一部分,故①是正确的;
对于②,依题意知点M到点F的距离与到直线AB的距离相等,所以M的轨迹是以F为焦点,AB为准线的抛物线,故②是正确的;
对于③,如图(1),取AB的中点I,BC的中点O,显然,,从而可以证明平面平面,当M在线段IO上时,均有平面,即动点M的轨迹是线段IO,故③是正确的;
对于④,如图(2),依题意,只需过点P作直线CQ的垂面即可,垂面与正方体表面的交线即为动点M的轨迹.分别取,的中点R,S,由,知,易知,又,,所以平面ABRS,过P作平面ABRS的平行平面,点M的轨迹为四边形,其周长与四边形ABRS的周长相等,所以点M所构成的轨迹的周长为,故④是正确的.
因此说法正确的有4个.
故选:D.
科目:高中数学 来源: 题型:
【题目】如图,是圆的直径,点是圆上异于,的点,直线平面,,分别是,的中点.
(Ⅰ)记平面与平面的交线为,试判断直线与平面的位置关系,并加以证明;
(Ⅱ)设,求二面角大小的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)若二项式的展开式中存在常数项,则的最小值为______;
(2)从6名志愿者中选出4人,分别参加两项公益活动,每项活动至少1人,则不同安排方案的种数为____.(用数字作答)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线与抛物线交于P,Q两点,且的面积为16(O为坐标原点).
(1)求C的方程.
(2)直线l经过C的焦点F且l不与x轴垂直;l与C交于A,B两点,若线段AB的垂直平分线与x轴交于点D,试问在x轴上是否存在点E,使为定值?若存在,求该定值及E的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在棱长为4的正方体中,点M是正方体表面上一动点,则下列说法正确的个数为( )
①若点M在平面ABCD内运动时总满足,则点M在平面ABCD内的轨迹是圆的一部分;
②在平面ABCD内作边长为1的小正方形EFGA,点M满足在平面ABCD内运动,且到平面的距离等于到点F的距离,则M在平面ABCD内的轨迹是抛物线的一部分;
③已知点N是棱CD的中点,若点M在平面ABCD内运动,且平面,则点M在平面内的轨迹是线段;
④已知点P、Q分别是,的中点,点M为正方体表面上一点,若MP与CQ垂直,则点M所构成的轨迹的周长为.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的右焦点与抛物线的焦点重合,曲线与相交于点.
(1)求椭圆的方程;
(2)过右焦点的直线(与轴不重合)与椭圆交于,两点,线段的中点,连接并延长交椭圆于点(为坐标原点),求四边形面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直角三角形所在的平面与半圆弧所在平面相交于,,,分别为,的中点, 是上异于,的点, .
(1)证明:平面平面;
(2)若点为半圆弧上的一个三等分点(靠近点)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,直线的极坐标方程为.
(1)求曲线的普通方程及直线的直角坐标方程;
(2)求曲线上的点到直线的距离的最大值与最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com