【题目】某调查机构为了解人们对某个产品的使用情况是否与性别有关,在网上进行了问卷调查,在调查结果中随机抽取了份进行统计,得到如下列联表:
男性 | 女性 | 合计 | |
使用 | 15 | 5 | 20 |
不使用 | 10 | 20 | 30 |
合计 | 25 | 25 | 50 |
(1)请根据调查结果你有多大把握认为使用该产品与性别有关;
(2)在不使用该产品的人中,按性别用分层抽样抽取人,再从这人中随机抽取人参加某项活动,记被抽中参加该项活动的女性人数为,求的分布列和数学期望.
附:,
0.010 | 0.005 | 0.001 | |
6.635 | 7.879 | 10.828 |
【答案】(1)有把握认为使用该产品与性别有关(2)详见解析
【解析】
(1)由题中数据,根据得到的观测值,根据临界值表,即可得出结果;
(2)由题意,根据分层抽样的方法得到抽取人则男性应抽取人,女性应抽取人,再从中随机抽取人参加某项活动,记女生的人数为,由题意确定的所有可能取值,求出对应的概率,进而可得出分布列,求出期望.
(1)由题中数据可得,
,
由于,所以有把握认为使用该产品与性别有关.
(2)由列联表知,不使用该产品的人数为,其中男性人,女性人,按性别用分层抽样抽取人则男性应抽取人,女性应抽取人,再从中随机抽取人参加某项活动,记女生的人数为,则的所有可能取值为:,,,
且,,,
所以的概率分布列为
数学期望为:.
科目:高中数学 来源: 题型:
【题目】对于正整数集合,如果任意去掉其中一个元素之后,剩余的所有元素组成的集合都能分为两个交集为空集的集合,且这两个集合的所有元素之和相等,就称集合为“可分集合”.
(1)判断集合和是否是“可分集合”(不必写过程);
(2)求证:五个元素的集合一定不是“可分集合”;
(3)若集合是“可分集合”.
①证明:为奇数;
②求集合中元素个数的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在新中国成立70周年国庆阅兵庆典中,众多群众在脸上贴着一颗红心,以此表达对祖国的热爱之情,在数学中,有多种方程都可以表示心型曲线,其中有著名的笛卡尔心型曲线,如图,在直角坐标系中,以原点O为极点,x轴正半轴为极轴建立极坐标系.图中的曲线就是笛卡尔心型曲线,其极坐标方程为(),M为该曲线上的任意一点.
(1)当时,求M点的极坐标;
(2)将射线OM绕原点O逆时针旋转与该曲线相交于点N,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学“主持朗诵”社团的成员中,分别有高一、高二、高三年级各1、2、3名表达与形象俱佳的学生,在该校“元旦节目汇演”中,要从这6名学生中选取两人担任节目主持人,则至少有一个是高三学生的概率是_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,直线l的参数方程为(t为参数),以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ(ρ﹣2sinθ)=1.
(1)求C的直角坐标方程;
(2)设直线l与y轴相交于P,与曲线C相交于A、B两点,且|PA|+|PB|=2,求点O到直线l的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,直线l的参数方程为(t为参数),在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρsin2θ=4cosθ.
(1)求直线l的普通方程与曲线C的直角坐标方程;
(2)若直线l与x轴的交点为F,直线l与曲线C的交点为A、B,求|FA|+|FB|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x),g(x)=f()+1(k∈R,k≠0),则下列关于函数y=f[g(x)]+1的零点个数判断正确的是( )
A.当k>0时,有2个零点;当k<0时,有4个零点
B.当k>0时,有4个零点;当k<0时,有2个零点
C.无论k为何值,均有2个零点
D.无论k为何值,均有4个零点
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com