精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=sin2x+sinx+cosx,以下说法中不正确的是(
A.f(x)周期为2π
B.f(x)最小值为﹣
C.f(x)在区间[0, ]单调递增
D.f(x)关于点x= 对称

【答案】C
【解析】解:①∵f(x+2π)=sin[2(x+2π)]+sin(x+2π)+cos(x+2π)=sin2x+sinx+cosx=f(x),
∴函数周期为2π,故①正确;
②设t=sinx+cosx= sin(x+ )∈[﹣ ],
∴t2=(sinx+cosx)2=1+sin2x,
∴sin2x=t2﹣1,
∴y=sin2x+sinx+cosx=t2﹣1+t=t2+t﹣1=(t+ 2 ,t∈[﹣ ],
由二次函数可知,当t∈[﹣ ,﹣ ]时,函数y=t2+t﹣1单调递减,当t∈[﹣ ]时,函数y=t2+t﹣1单调递增,
∴当t=﹣ 时,函数取最小值ymin=﹣ ,故②正确;
③∵f(x)=sin2x+sinx+cosx,
当x= 时,f(x)=1+
当x= 时,f(x)=1,
∴f(x)在区间[0, ]不是单调递增.
故③错误;
④∵f( ﹣x)=sin[2( ﹣x)]+sin( ﹣x)+cos( ﹣x)=sin(π﹣2x)+sinx+cosx=sin2x+sinx+cosx=f(x),
∴函数关于x= 对称,故④正确.
所以答案是:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在一次商贸交易会上,商家在柜台开展促销抽奖活动,甲、乙两人相约同一天上午去该柜台参与抽奖.

(1)若抽奖规则是从一个装有个红球和 个白球的袋中一次取出个球,当两个球同色时则中奖,求中奖概率;

(2)若甲计划在之间赶到,乙计划在之间赶到,求甲比乙提前到达的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为.

(1)求椭圆的方程式;

(2)已知动直线与椭圆相交于两点.

①若线段中点的横坐标为,求斜率的值;

②已知点,求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设满足以下两个条件的有穷数列 期待数列

.

)分别写出一个单调递增的阶和期待数列”.

)若某期待数列是等差数列,求该数列的通项公式.

)记期待数列的前项和为,试证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图7.

(1)根据茎叶图判断哪个班的平均身高较高;

(2)计算甲班的样本方差;

(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,椭圆C: =1a>b>0过点P(1, ).离心率为

(1)求椭圆C的方程;

(2)设直线l与椭圆C交于A,B两点.

①若直线l过椭圆C的右焦点,记△ABP三条边所在直线的斜率的乘积为t.

t的最大值;

②若直线l的斜率为,试探究OA2+ OB2是否为定值,若是定值,则求出此

定值;若不是定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆和双曲线的公共焦点,是它们的一个公共点,且,则椭圆和双曲线的离心率的倒数之和的最大值为(  )

A. B. C. 3 D. 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,从参加环保知识竞赛的学生中抽出名,将其成绩(均为整数)整理后画出的频率分布直方图如下,观察图形,回答下列问题:

(1)这一组的频数、频率分别是多少?

(2)估计这次环保知识竞赛的及格率(分及以上为及格)和平均数?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三年级进行了一次学业水平测试,用系统抽样的方法抽取了50名学生的数学成绩,准备进行分析和研究.经统计,成绩的分组及各组的频数如下: ,2; ,3; ,10;

15; ,12; ,8.

(1)完成样本的频率分布表,画出频率分布直方图;

(2)估计成绩在85分以下的学生比例;

(3)请你根据以上信息去估计样本的众数、中位数、平均数(精确到0.01).

查看答案和解析>>

同步练习册答案