ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪe=
3
3
£¬ÒÔÔ­µãΪԲÐÄ£¬ÍÖÔ²µÄ¶Ì°ëÖ᳤Ϊ°ë¾¶µÄÔ²ÓëÖ±Ïßx-y+2=0ÏàÇУ¬A£®B·Ö±ðÊÇÍÖÔ²µÄ×ó¡¢ÓÒ¶¥µã£¬PΪÍÖÔ²CÉϵĶ¯µã£®
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©ÈôPÓëA¡¢B¾ù²»Öغϣ¬ÉèÖ±ÏßPAÓëPBµÄбÂÊ·Ö±ðΪk1¡¢k2£¬Ö¤Ã÷£ºk1•k2Ϊ¶¨Öµ£»
£¨3£©ÈôMΪ¹ýPÇÒ´¹Ö±ÓÚxÖáµÄÖ±ÏßÉϵĵ㣬ÇÒ
|OP|
|OM|
=2£¬ÇóµãMµÄ¹ì¼£·½³Ì£®
·ÖÎö£º£¨1£©Ð´³öÔ²µÄ·½³Ì£¬ÀûÓÃÖ±ÏßÓëÔ²ÏàÇеijäÒªÌõ¼þÁгö·½³ÌÇó³öbµÄÖµ£¬ÀûÓÃÍÖÔ²µÄÀëÐÄÂʹ«Ê½µÃµ½a£¬cµÄ¹Øϵ£¬ÔÙÀûÓÃÍÖÔ²±¾ÉíÈý¸ö²ÎÊýµÄ¹ØϵÇó³öa£¬cµÄÖµ£¬´Ó¶ø¿ÉµÃÍÖÔ²µÄ·½³Ì£»
£¨2£©Éè³öPµÄ×ø±ê£¬½«Æä´úÈëÍÖÔ²µÄ·½³ÌµÃµ½PµÄ×ø±êµÄ¹Øϵ£¬Ð´³öA£¬BµÄ×ø±ê£¬ÀûÓÃÁ½µãÁ¬ÏßµÄбÂʹ«Ê½Çó³ök1£¬k2£¬½«PµÄ×ø±êµÄ¹Øϵ´úÈëk1k2»¯¼òÇó³öÆäÖµ£®
£¨3£©Éè³öMµÄ×ø±ê£¬Çó³öPµÄ×ø±ê£¬ÀûÓÃÁ½µãµÄ¾àÀ빫ʽ½«ÒÑÖªµÄ¼¸ºÎÌõ¼þÓÃ×ø±ê±íʾ£¬»¯¼ò¼´¿ÉÇóµãMµÄ¹ì¼£·½³Ì£®
½â´ð£º£¨1£©½â£ºÓÉÌâÒâ¿ÉµÃÔ²µÄ·½³ÌΪx2+y2=b2£¬
¡ßÖ±Ïßx-y+2=0ÓëÔ²ÏàÇУ¬
¡àd=
2
2
=b£¬¼´b=
2
£¬
ÓÖe=
c
a
=
3
3
£¬¼´a=
3
c£¬
¡ßa2=b2+c2£¬
¡àa=
3
£¬c=1£¬
¡àÍÖÔ²·½³ÌΪ
x2
3
+
y2
2
=1
£»
£¨2£©Ö¤Ã÷£ºÉèP£¨x0£¬y0£©£¨y0¡Ù0£©£¬A£¨-
3
£¬0£©£¬B£¨
3
£¬0£©£¬
¡àk1=
y0
x0+
3
£¬k2=
y0
x0-
3

¡ß
x02
3
+
y02
2
=1
£¬¡ày02=2-
2x02
3
£¬
¡àk1•k2=
y02
x02-(
3
)2
=
2-
2x02
3
x02-(
3
)
2
=-
2
3
£»
£¨3£©½â£ºÉèM£¨x£¬y£©£¬ÆäÖÐx¡Ê[-
3
£¬
3
]£®
ÓÉÒÑÖª
|OP|
|OM|
=2¼°µãPÔÚÍÖÔ²CÉϿɵÃ
x2+2-
2
3
x2
x2+y2
=4
ÕûÀíµÃ
x2
6
11
+
y2
2
=1
£¬ÆäÖÐx¡Ê[-
3
£¬
3
]£®
µãÆÀ£º±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬¿¼²éÖ±ÏßµÄбÂÊ£¬¿¼²é¹ì¼£·½³Ì£¬¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄÀëÐÄÂÊΪ
1
2
£¬ÇÒ¾­¹ýµãP(1£¬
3
2
)
£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèFÊÇÍÖÔ²CµÄ×ó½¹£¬ÅжÏÒÔPFΪֱ¾¶µÄÔ²ÓëÒÔÍÖÔ²³¤ÖáΪֱ¾¶µÄÔ²µÄλÖùØϵ£¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄ¶ÌÖ᳤Ϊ2
3
£¬ÓÒ½¹µãFÓëÅ×ÎïÏßy2=4xµÄ½¹µãÖغϣ¬OΪ×ø±êÔ­µã£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèA¡¢BÊÇÍÖÔ²CÉϵIJ»Í¬Á½µã£¬µãD£¨-4£¬0£©£¬ÇÒÂú×ã
DA
=¦Ë
DB
£¬Èô¦Ë¡Ê[
3
8
£¬
1
2
]£¬ÇóÖ±ÏßABµÄбÂʵÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©¾­¹ýµãA£¨1£¬
3
2
£©£¬ÇÒÀëÐÄÂÊe=
3
2
£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©¹ýµãB£¨-1£¬0£©ÄÜ·ñ×÷³öÖ±Ïßl£¬Ê¹lÓëÍÖÔ²C½»ÓÚM¡¢NÁ½µã£¬ÇÒÒÔMNΪֱ¾¶µÄÔ²¾­¹ý×ø±êÔ­µãO£®Èô´æÔÚ£¬Çó³öÖ±ÏßlµÄ·½³Ì£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•·¿É½Çø¶þÄ££©ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1
£¨a£¾b£¾0£©µÄ³¤Ö᳤ÊÇ4£¬ÀëÐÄÂÊΪ
1
2
£®
£¨¢ñ£©ÇóÍÖÔ²·½³Ì£»
£¨¢ò£©Éè¹ýµãP£¨0£¬-2£©µÄÖ±Ïßl½»ÍÖÔ²ÓÚM£¬NÁ½µã£¬ÇÒM£¬N²»ÓëÍÖÔ²µÄ¶¥µãÖغϣ¬ÈôÒÔMNΪֱ¾¶µÄÔ²¹ýÍÖÔ²CµÄÓÒ¶¥µãA£¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄ¶ÌÖ᳤Ϊ2£¬ÀëÐÄÂÊΪ
2
2
£¬Éè¹ýÓÒ½¹µãµÄÖ±ÏßlÓëÍÖÔ²C½»ÓÚ²»Í¬µÄÁ½µãA£¬B£¬¹ýA£¬B×÷Ö±Ïßx=2µÄ´¹ÏßAP£¬BQ£¬´¹×ã·Ö±ðΪP£¬Q£®¼Ç¦Ë=
AP+BQ
PQ
£¬ÈôÖ±ÏßlµÄбÂÊk¡Ý
3
£¬Ôò¦ËµÄÈ¡Öµ·¶Î§Îª
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸