精英家教网 > 高中数学 > 题目详情

(本题满分14分)如图,四棱锥的底面为矩形,且


(Ⅰ)平面与平面是否垂直?并说明理由;
(Ⅱ)求直线与平面所成角的正弦值.

(I)见解析;(Ⅱ).

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,已知四棱锥的底面是正方形,⊥底面,且,点分别为侧棱的中点 

(1)求证:∥平面
(2)求证:⊥平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)
如图,在底面是正方形的四棱锥中,于点中点,上一点.
⑴求证:
⑵确定点在线段上的位置,使//平面,并说明理由.
⑶当二面角的大小为时,求与底面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在正方体中,为底面的中心,的中点,设上的中点,求证:(1);
(2)平面∥平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分) 如图,用一付直角三角板拼成一直二面角A—BD—C,若其中给定 AB="AD" =2,
(Ⅰ)求三棱锥A-BCD的体积;
(Ⅱ)求点A到BC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)在如图所示的几何体中,四边形ABCD为平行四边形,∠ ACB=,EF∥AB,FG∥BC,EG∥AC. AB="2EF." 若M是线段AD的中点。求证:GM∥平面ABFE 
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

、如图,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中点。
求证:(1)PA∥平面BDE
(2)平面PAC平面BDE

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形ABCD中,为正三角形,,AC与BD交于O点.将沿边AC折起,使D点至P点,已知PO与平面ABCD所成的角为,且P点在平面ABCD内的射影落在内.

(Ⅰ)求证:平面PBD;
(Ⅱ)若已知二面角的余弦值为,求的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,在多面体ABDEC中,AE平面ABC,BD//AE,且AC=AB=BC=AE=1,BD=2,F为CD中点。
(I)求证:EF//平面ABC;
(II)求证:平面BCD;
(III)求多面体ABDEC的体积。

查看答案和解析>>

同步练习册答案