分析 (1)f(x)=$\frac{{2}^{x}{-2}^{-x}}{{2}^{x}+{2}^{-x}}$是奇函数,利用定义法能证明f(x)是奇函数.
(2)f(x)=$\frac{{2}^{x}{-2}^{-x}}{{2}^{x}+{2}^{-x}}$=$\frac{{2}^{2x}-1}{{2}^{2x}+1}$=$\frac{{2}^{2x}+1-2}{{2}^{2x}+1}$=1-$\frac{2}{{2}^{2x}+1}$,由$\frac{3}{5}$≤f(x)$≤\frac{15}{17}$,得5≤22x+1≤17,由此能耱出不等式$\frac{3}{5}$≤f(x)$≤\frac{15}{17}$的解集.
解答 解:(1)f(x)=$\frac{{2}^{x}{-2}^{-x}}{{2}^{x}+{2}^{-x}}$是奇函数.
证明如下:
∵函数f(x)=$\frac{{2}^{x}{-2}^{-x}}{{2}^{x}+{2}^{-x}}$,∴x∈R,
且f(-x)=$\frac{{2}^{-x}-{2}^{x}}{{2}^{-x}+{2}^{x}}$=-$\frac{{2}^{x}{-2}^{-x}}{{2}^{x}+{2}^{-x}}$=-f(x),
∴f(x)是奇函数.
(2)f(x)=$\frac{{2}^{x}{-2}^{-x}}{{2}^{x}+{2}^{-x}}$=$\frac{{2}^{2x}-1}{{2}^{2x}+1}$=$\frac{{2}^{2x}+1-2}{{2}^{2x}+1}$=1-$\frac{2}{{2}^{2x}+1}$,
∵22x+1是单调递增,∴$\frac{2}{{2}^{2x}+1}$单调递减,
∴f(x)=$\frac{{2}^{x}{-2}^{-x}}{{2}^{x}+{2}^{-x}}$=1-$\frac{2}{{2}^{2x}+1}$是单调递增函数,
∵$\frac{3}{5}$≤f(x)$≤\frac{15}{17}$,∴$\frac{3}{5}$≤1-$\frac{2}{{2}^{2x}+1}$$≤\frac{15}{17}$,
∴-$\frac{2}{5}≤-\frac{2}{{2}^{2x}+1}≤-\frac{2}{17}$,∴$\frac{2}{17}≤\frac{2}{{2}^{2x}+1}≤\frac{2}{5}$,
∴5≤22x+1≤17,解得1≤x≤2.
∴不等式$\frac{3}{5}$≤f(x)$≤\frac{15}{17}$的解集为[1,2].
点评 本题考查函数的奇偶性的判断与证明,考查不等式的解集的求法,是中档题,解题时要认真审题,注意等价转化思想的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com