精英家教网 > 高中数学 > 题目详情

【题目】如图,某观测站在港口A的南偏西40°方向的C处,测得一船在距观测站31海里的B处,正沿着从港口出发的一条南偏东20°的航线上向港口A开去,当船走了20海里到达D处,此时观测站又测得CD等于21海里,问此时船离港口A处还有多远?

【答案】解:由题∠CAB=60°,设∠ACD=α,∠CDB=β,
在△CDB中,由余弦定理得


在△ACD中,
由正弦定理得

即船离港口A处还有15海里.

【解析】在△BDC中,先由余弦定理可得,可求cos∠CDB,进而可求sin∠CDB,由三角形的内角和定理可得sinα,再在△ACD中,由正弦定理求出AD的长;
【考点精析】通过灵活运用正弦定理的定义,掌握正弦定理:即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,tanA是以﹣4为第三项,4为第七项的等差数列的公差,tanB是以2为公差,9为第五项的等差数列的第二项,则这个三角形是(
A.锐角三角形
B.钝角三角形
C.等腰直角三角形
D.等腰或直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一房产商竞标得一块扇形OPQ地皮,其圆心角∠POQ= ,半径为R=200m,房产商欲在此地皮上修建一栋平面图为矩形的商住楼,为使得地皮的使用率最大,准备了两种设计方案如图,方案一:矩形ABCD的一边AB在半径OP上,C在圆弧上,D在半径OQ;方案二:矩形EFGH的顶点在圆弧上,顶点G,H分别在两条半径上.请你通过计算,为房产商提供决策建议.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=asin2x+bcos2x(ab≠0),有下列四个命题:其中正确命题的序号为(填上所有正确命题的序号)
①若a=1,b=﹣ ,要得到函数y=f(x)的图象,只需将函数y=2sin2x的图象向右平移 个单位;
②若a=1,b=﹣1,则函数y=f(x)的一个对称中心为( ,0);
③若y=f(x)的一条对称轴方程为x= ,则a=b;
④若方程asin2x+bcos2x=m的正实数根从小到大依次构成一个等差数列,则这个等差数列的公差为π.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆关于直线对称的圆为.

(1)求圆的方程;

(2)过点作直线与圆交于两点, 是坐标原点,是否存在这样的直线,使得在平行四边形?若存在,求出所有满足条件的直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(算法流程图)的输出值x为(

A.13
B.12
C.22
D.11

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动点分别到两定点 连线的斜率之乘积为,设的轨迹为曲线 分别为曲线的左右焦点,则下列命题中:

(1)曲线的焦点坐标为 ;

(2)若,则 ;

(3)当时, 的内切圆圆心在直线上;

(4)设,则的最小值为.

其中正确命题的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某校高二年级学生中随机抽取了20名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图.

求图中实数a的值;

若该校高二年级共有学生600名,试估计该校高二年级期中考试数学成绩不低于60分的人数;

若从数学成绩在[60,70)与[90,100]两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值大于10的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中, 是等腰直角三角形, ,侧棱 分别为的中点,点在平面上的射影是的重心.

(1)求证: 平面

2)求与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案