精英家教网 > 高中数学 > 题目详情

【题目】如今我们的互联网生活日益丰富,除了可以很方便地网购,网上叫外卖也开始成为不少人日常生活中不可或缺的一部分.为了解网络外卖在市的普及情况,市某调查机构借助网络进行了关于网络外卖的问卷调查,并从参与调查的网民中抽取了200人进行抽样分析,得到下表:(单位:人)

(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用网络外卖的情况与性别有关?

(2)①现从所抽取的女网民中利用分层抽样的方法再抽取5人,再从这5人中随机选出3人赠送外卖优惠券,求选出的3人中至少有2人经常使用网络外卖的概率;

②将频率视为概率,从市所有参与调查的网民中随机抽取10人赠送礼品,记其中经常使用网络外卖的人数为,求的数学期望和方差.

参考公式:,其中.

参考数据:

【答案】(1)不能在犯错误的概率不超过0.15的前提下认为市使用网络外卖情况与性别有关.

(2)①;②.

【解析】试题分析:(1)计算的值,进而可查表下结论;

(2)①由分层抽样的抽样比计算即可;

②由列联表,可知抽到经常使用网络外卖的网民的频率为,将频率视为概率,即从市市民中任意抽取1人,恰好抽到经常使用网络外卖的市民的概率为,由题意得.

试题解析:

(1)由列联表可知的观测值, .

所以不能在犯错误的概率不超过0.15的前提下认为市使用网络外卖情况与性别有关.

(2)①依题意,可知所抽取的5名女网民中,经常使用网络外卖的有(人),

偶尔或不用网络外卖的有(人).

则选出的3人中至少有2人经常使用网络外卖的概率为.

②由列联表,可知抽到经常使用网络外卖的网民的频率为

将频率视为概率,即从市市民中任意抽取1人,

恰好抽到经常使用网络外卖的市民的概率为.

由题意得

所以

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知BC是两个定点,|BC|=8,且△ABC的周长等于18,求这个三角形的顶点A的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定理:“实数m,n为常数,若函数h(x)满足h(m+x)+h(m﹣x)=2n,则函数y=h(x)的图象关于点(m,n)成中心对称”.
(1)已知函数f(x)= 的图象关于点(1,b)成中心对称,求实数b的值;
(2)已知函数g(x)满足g(2+x)+g(﹣x)=4,当x∈[0,2]时,都有g(x)≤3成立,且当x∈[0,1]时,g(x)=2kx1+1 , 求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数是定义在上的奇函数,且为偶函数,当时,,若函数恰有一个零点,则实数的取值集合是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△OAB中,点P为线段AB上的一个动点(不包含端点),且满足

(1)若λ= ,用向量 表示
(2)若| |=4,| |=3,且∠AOB=60°,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位共有老、中、青职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为(
A.9
B.18
C.27
D.36

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l:y=ax+1﹣a(a∈R).若存在实数a使得一条曲线与直线l有两个不同的交点,且以这两个交点为端点的线段长度恰好等于|a|,则称此曲线为直线l的“绝对曲线”.下面给出四条曲线方程:①y=﹣2|x﹣1|;②y=x2;③(x﹣1)2+(y﹣1)2=1;④x2+3y2=4;则其中直线l的“绝对曲线”有(
A.①④
B.②③
C.②④
D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,则每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.

若商店一天购进该商品10件,求当天的利润y单位:元关于当天需求量n单位:件,n∈N的函数解析式;

商店记录了50天该商品的日需求量单位:件,整理得下表:

日需求量n

8

9

10

11

12

频数

10

10

15

10

5

假设该店在这50天内每天购进10件该商品,求这50天的日利润单位:元的平均数;

若该店一天购进10件该商品,记“当天的利润在区间”为事件A,求PA的估计值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的单调区间和极值;

(2)是否存在实数,使得函数上的最小值为1?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案