精英家教网 > 高中数学 > 题目详情
(2013•牡丹江一模)已知函数f(x)是定义在(-∞,+∞)上的奇函数,若对于任意的实数x≥0,都有f(x+2)=f(x),且当x∈[0,2)时,f(x)=log2(x+1),则f(-2011)+f(2012)的值为(  )
分析:由题设知函数在[0,+∞)内一个周期T=2,函数f(x)是定义在R上的奇函数,所以f(-2011)+f(2012)=-f(2011)+f(2012)=-f(1)+f(0),再由当x∈[0,2)时,f(x)=log2(x+1),能求出f(-2011)+f(2012)的值.
解答:解:∵对于任意的实数x≥0,都有f(x+2)=f(x),
∴函数在[0,+∞)内的一个周期T=2,
∵函数f(x)是定义在R上的奇函数,
所以f(-2011)+f(2012)=-f(2011)+f(2012)
=-f(2011)+f(2012)
=-f(1)+f(0)
又当x∈[0,2)时,f(x)=log2(x+1),
∴f(1)=log2(1+1)=1
f(0)log2(0+1)=0
因此f(-2011)+f(2012)
=-f(1)+f(0)
=-1+0
=-1.
故选A.
点评:本题考查函数的奇偶性、周期性的应用,解题时要认真审题,仔细解答,注意合理运用等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•牡丹江一模)在球O内任取一点P,使得P点在球O的内接正方体中的概率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•牡丹江一模)复数 (1+i)z=i( i为虚数单位),则
.
z
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•牡丹江一模)已知函数f(x)=
1+1nx
x

(1)若函数f(x)在区间(a,a+
1
3
)(a>0)
上存在极值点,求实数a的取值范围;
(2)知果当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围;
(3)求证:[(n+1)!]2>(n+1)en-2+
2
n+1
,这里n∈N*,(n+1)!=1×2×3×…×(n+1),e为自然对数的底数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•牡丹江一模)已知函数f(x)=xlnx.
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程;
(Ⅲ)设函数g(x)=f(x)-a(x-1),其中a∈R,求函数g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•牡丹江一模)已知四棱锥P-ABCD的三视图如图所示,则四棱锥P-ABCD的四个侧面中面积最大的是(  )

查看答案和解析>>

同步练习册答案