精英家教网 > 高中数学 > 题目详情
2.给出下列六个命题:
①两个向量相等,则它们的起点相同,终点相同;
②若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$=$\overrightarrow{b}$;
③若$\overrightarrow{AB}$=$\overrightarrow{DC}$,则A,B,C,D四点构成平行四边形;
④在平行四边形ABCD中,一定有$\overrightarrow{AB}$=$\overrightarrow{DC}$;
⑤若$\overrightarrow{m}$=$\overrightarrow{n}$,$\overrightarrow{n}$=$\overrightarrow{p}$,则$\overrightarrow{m}$=$\overrightarrow{p}$;
⑥若向$\overrightarrow{a}$∥$\overrightarrow{b}$,$\overrightarrow{b}$∥$\overrightarrow{c}$,则$\overrightarrow{a}$∥$\overrightarrow{c}$.
其中错误的命题有①②③⑥.(填序号)

分析 在①中,两个零向量相等,则它们的起点相同,终点不一定相同;在②中,$\overrightarrow{a}$与$\overrightarrow{b}$大小相等,方向不一定相同;在③中,若$\overrightarrow{AB}$=$\overrightarrow{DC}$,则A,B,C,D四点不一定构成平行四边形;在④中,由向量相等的定义得一定有$\overrightarrow{AB}$=$\overrightarrow{DC}$;在⑤中,由向量相等的定义得$\overrightarrow{m}$=$\overrightarrow{p}$;在⑥中,当$\overrightarrow{b}$=$\overrightarrow{0}$时,$\overrightarrow{a}$与$\overrightarrow{c}$不一定平行.

解答 解:在①中,两个零向量相等,则它们的起点相同,终点不一定相同,故①错误;
在②中,若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$与$\overrightarrow{b}$大小相等,方向不一定相同,故②错误;
在③中,若$\overrightarrow{AB}$=$\overrightarrow{DC}$,则A,B,C,D四点不一定构成平行四边形,故③错误;
在④中,在平行四边形ABCD中,由向量相等的定义得一定有$\overrightarrow{AB}$=$\overrightarrow{DC}$,故④正确;
在⑤中,若$\overrightarrow{m}$=$\overrightarrow{n}$,$\overrightarrow{n}$=$\overrightarrow{p}$,则向量相等的定义得$\overrightarrow{m}$=$\overrightarrow{p}$,故⑤正确;
在⑥中,若向$\overrightarrow{a}$∥$\overrightarrow{b}$,$\overrightarrow{b}$∥$\overrightarrow{c}$,当$\overrightarrow{b}$=$\overrightarrow{0}$时,$\overrightarrow{a}$与$\overrightarrow{c}$不一定平行,故⑥不正确.
故答案为:①②③⑥.

点评 本题考查命题真假的判断,是基础题,解题时要认真审题,注意向量相等、向量平行的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=\frac{lnx}{x}-\frac{k}{x}$(k∈R).
(1)若函数f(x)的最大值为h(k),k≠1,试比较h(k)与$\frac{1}{{{e^{2k}}}}$的大小;
(2)若不等式${x^2}f(x)+\frac{1}{x+1}≥0$与$k≥-x+4\sqrt{x}-\frac{15}{4}$在[1,+∞)上均恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ax2-x+2,
(1)当a=1时,当x∈[1,+∞)时,求函数$\frac{f(x)}{x}$的最小值;
(2)解关于x的不等式f(x)-2ax≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.P为双曲线$\frac{x^2}{4}-\frac{y^2}{9}=1$右支上一点,F1,F2分别为双曲线的左右焦点,且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,直线PF2交y轴于点A,则△AF1P的内切圆半径为(  )
A.2B.3C.$\frac{3}{2}$D.$\frac{{\sqrt{13}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知数列{an}满足a1=1,an+1•an=2n(n∈N*),则S2017=(  )
A.21010-1B.21010-3C.3•21008-1D.21009-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设函数f(x)定义在实数集R上,满足f(1+x)=f(1-x),当x≥1时,f(x)=2x,则下列结论正确的是(  )
A.f($\frac{1}{3}$)<f(2)<f($\frac{1}{2}$)B.f($\frac{1}{2}$)<f(2)<f($\frac{1}{3}$)C.f($\frac{1}{2}$)<f($\frac{1}{3}$)<f(2)D.f(2)<f($\frac{1}{3}$)<f($\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=(2a-1)x(x∈N+)是减函数,则a的取值范围是(  )
A.a>1B.a<$\frac{1}{2}$C.$\frac{1}{2}$<a<1D.$\frac{1}{2}$≤a<1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设集合S={x|x<-5或x>5},T={x|-7<x<3},则S∩T=(  )
A.{x|-7<x<-5}B.{x|3<x<5}C.{x|-5<x<3}D.{{x|-7<x<5}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知点A为椭圆$\left\{\begin{array}{l}{x=5cosθ}\\{y=3sinθ}\end{array}\right.$ (θ为参数)上任意一点,点B为圆(x-1)2+y2=1 上任意一点,则|AB|的最大值为7.

查看答案和解析>>

同步练习册答案