精英家教网 > 高中数学 > 题目详情

【题目】如图所示的几何体中,四边形为等腰梯形, ,四边形为正方形,平面平面.

(1)若点是棱的中点,求证: 平面

(2)求直线与平面所成角的正弦值.

【答案】(1)见解析;(2)

【解析】试题分析:

(1)要证线面平行,一般先证线线平行,由中点及其他已知可证平行且相等,从而得平行四边形,也就有线线平行从而得线面平行;

(2)由已知证得两两垂直,以它们为坐标轴建立空间直角坐标系,写出相应点的坐标,求出平行的法向量,由直线的方向向量与平面法向量夹角余弦的绝对值等于直线与平面所成角的正弦值可得结论.

试题解析:

(1)证明:由已知得// ,且.

因为为等腰梯形,所以有// .

因为是棱的中点,所以

所以// ,且

故四边形为平行四边形,

所以// .

因为平面 平面

所以//平面

解:(2)因为四边形为正方形,所以.

因为平面平面

平面平面平面

所以平面.

在△中,因为

所以由余弦定理,得

所以

在等腰梯形中,可得.

如图,以为原点,以所在直线分别为

轴, 建立空间坐标系,

所以 .

设平面的法向量为,由

所以,取,则,得

设直线与平面所成的角为

所以与平面所成的角的正弦值为. 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线 与抛物线交于 两点,记抛物线在 两点处的切线 的交点为

(I)求证:

(II)求点的坐标( 表示);

)若,求的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将号码分别为1、2、…、9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个球.其号码为a,放回后,乙从此袋中再摸出一个球,其号码为b,则使不等式a-2b+10>0成立的事件发生的概率等于________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)= 若a,b,c,d各不相同,且f(a)=f(b)=f(c)=f(d),则abcd的取值范围是(
A.(24,25)
B.[16,25)
C.(1,25)
D.(0,25]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1= ,an+1an=2an+1﹣1(n∈N*),令bn=an﹣1.
(1)求数列{bn}的通项公式;
(2)令cn= ,求证:c1+c2+…+cn<n+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若a和b是计算机在区间(0,2)上产生的均匀随机数,则一元二次不等式ax2+4x+4b>0(a>0)的解集不是R的概率为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数

(1)讨论的单调区间和极值;

(2)将函数的图象向下平移1个单位后得到的图象,且为自然对数的底数)和是函数的两个不同的零点,求的值并证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定集合A={a1 , a2 , a3 , …,an}(n∈N* , n≥3)中,定义ai+aj(1≤i<j≤n,i,j∈N*)中所有不同值的个数为集合A两元素和的容量,用L(A)表示.若数列{an}是公差不为0的等差数列,设集合A={a1 , a2 , a3 , …,a2016},则L(A)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在[﹣ ]的函数f(x)=sinx(cosx+1)﹣ax,若y=f(x)仅有一个零点,则实数a的取值范围是(
A.( ,2]
B.(﹣∞, )∪[2,+∞)
C.[﹣
D.(﹣∞,﹣ ]∪( ,+∞)

查看答案和解析>>

同步练习册答案