精英家教网 > 高中数学 > 题目详情

【题目】已知a,b,c∈R,a2+b2+c2=1.
(Ⅰ)求证:|a+b+c|≤
(Ⅱ)若不等式|x﹣1|+|x+1|≥(a+b+c)2对一切实数a,b,c恒成立,求实数x的取值范围.

【答案】解:(Ⅰ)证明:由柯西不等式得,(a+b+c)2≤(12+12+12)(a2+b2+c2),

即有(a+b+c)2≤3,即有|a+b+c|≤

(Ⅱ)解:不等式|x﹣1|+|x+1|≥(a+b+c)2对一切实数a,b,c恒成立,

则由(Ⅰ)可知,|x﹣1|+|x+1|≥3,

由x≥1得,2x≥3,解得,x≥

由x≤﹣1,﹣2x≥3解得,x≤﹣

由﹣1<x<1得,2≥3,不成立.

综上,可得x≥ 或x≤﹣

则实数x的取值范围是(﹣ ]∪[


【解析】(Ⅰ)由柯西不等式得,(a+b+c)2≤(12+12+12)(a2+b2+c2),即可得证;(Ⅱ)不等式|x﹣1|+|x+1|≥(a+b+c)2对一切实数a,b,c恒成立,则由(Ⅰ)可知,|x﹣1|+|x+1|≥3,运用绝对值的定义,即可解出不等式.
【考点精析】通过灵活运用绝对值不等式的解法和不等式的证明,掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号;不等式证明的几种常用方法:常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex+2ax.
(1)求函数f(x)的单调区间;
(2)若函数f(x)在区间[1,+∞)上的最小值为0,求a的值;
(3)若对于任意x≥0,f(x)≥ex恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将三颗骰子各掷一次,记事件A=“三个点数都不同”,B=“至少出现一个6点”,则条件概率P(A|B),P(B|A)分别是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为 ,中奖可以获得2分;方案乙的中奖率为 ,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.
(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为x,求x≤3的概率;
(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:如果函数y=f(x)在定义域内给定区间[a,b]上存在x0(a<x0<b),满足f(x0)= ,则称函数y=f(x)是[a,b]上的“平均值函数”,x0是它的一个均值点.例如y=|x|是[﹣2,2]上的平均值函数,0就是它的均值点.若函数f(x)=x2﹣mx﹣1是[﹣1,1]上的“平均值函数”,则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣1|
(Ⅰ)解不等式f(2x)+f(x+4)≥8;
(Ⅱ)若|a|<1,|b|<1,a≠0,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A,B分别为椭圆C: + =1(a>b>0)在x轴正半轴,y轴正半轴上的顶点,原点O到直线AB的距离为 ,且|AB|=
(1)求椭圆C的离心率;
(2)直线l:y=kx+m(﹣1≤k≤2)与圆x2+y2=2相切,并与椭圆C交于M,N两点,求|MN|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足an= ,若从{an}中提取一个公比为q的等比数列{a },其中k1=1且k1<k2<…<kn , kn∈N*,则满足条件的最小q的值为(
A.
B.
C.
D.2

查看答案和解析>>

同步练习册答案