精英家教网 > 高中数学 > 题目详情

【题目】如图,已知一个八面体各棱长均为1,四边形ABCD为正方形,则下列命题中不正确的是

A. 不平行的两条棱所在直线所成的角为 B. 四边形AECF为正方形

C. A到平面BCE的距离为 D. 该八面体的顶点在同一个球面上

【答案】C

【解析】解答:

因为八面体的各条棱长均为1,四边形ABCD为正方形,

所以在四棱锥EABCD,相邻两条侧棱所成的角为60°,而像AECE所成的角为90°A正确

因为AE=CE=1,AC= ,满足勾股定理的逆定理,所以AECE,同理AFCFAEAF,所以四边形AECF是正方形;故B正确;

设点A到平面BCE的距离h,VEABCD=2VABCE

所以

所以点A到平面BCE的距离;故C错误

该八面体的顶点会在同一个球面上,球心为ABCD的中心,故D正确。

本题选择C选项.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】方程有两个不等的负根, 方程无实根,若“”为真,“”为假,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数,关于实数的不等式的解集为

1时,解关于的不等式:

2是否存在实数,使得关于的函数的最小值为-5?若存在,求实数的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

知圆锥曲线参数和定点此圆锥曲线的左、右焦点,以原点,以的正半轴为极轴建立极坐标系.

1直线直角坐标方程;

2过点与直线直的直线此圆锥曲线于两点,求值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1函数区间是减函数,求实数取值范围;

2函数时,成立,求取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是公差为等差数列,是公比为的等比数列. .

1求证: 数列为等比数列;

2已知数列的前项分别为.

求数列的通项公式;

是否存在元素均为正整数的集合,使得数列等差数列?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 ,直线 .

(Ⅰ)求直线被圆所截得的弦长最短时的值及最短弦长;

(Ⅱ)已知坐标轴上点和点满足:存在圆上的两点,使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

(1)求证:曲线在点处的切线过定点;

(2)若在区间上的极大值,但不是最大值,求实数的取值范围;

(3)求证:对任意给定的正数,总存在,使得上为单调函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆.

(1)若直线过定点,且与圆相切,求的方程;

(2)若圆的半径为,圆心在直线上,且与圆外切,求圆的方程.

查看答案和解析>>

同步练习册答案