精英家教网 > 高中数学 > 题目详情

【题目】如图,△ABC的顶点A,C在圆O上,B在圆外,线段AB与圆O交于点M.
(1)若BC是圆O的切线,且AB=8,BC=4,求线段AM的长度;
(2)若线段BC与圆O交于另一点N,且AB=2AC,求证:BN=2MN.

【答案】
(1)解:由切割线定理可得BC2=BMBA.

设AM=t,则

∵AB=8,BC=4,∴16=8(8﹣t),

∴t=6,即线段AM的长度为6


(2)证明:由题意,∠A=∠MNB,∠B=∠B,

∴△BMN∽△BCA,

∵AB=2AC,

∴BN=2MN


【解析】(1)由切割线定理可得BC2=BMBA.由此可得方程,即可求线段AM的长度;(2)证明△BMN∽△BCA,结合AB=2AC,即可证明:BN=2MN.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】现要完成下列3项抽样调查:

①从15种疫苗中抽取5种检测是否合格.

②涡阳县某中学共有480名教职工,其中一线教师360名,行政人员48名,后勤人员72名.为了解教职工对学校校务公开方面的意见,拟抽取一个容量为20的样本.

③涡阳县某中学报告厅有28排,每排有35个座位,一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请28名听众进行座谈.

较为合理的抽样方法是( )

A. ①简单随机抽样, ②系统抽样, ③分层抽样

B. ①简单随机抽样, ②分层抽样, ③系统抽样

C. ①系统抽样, ②简单随机抽样, ③分层抽样

D. ①分层抽样, ②系统抽样, ③简单随机抽样

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有 (n≥2,n∈N*)个给定的不同的数随机排成一个下图所示的三角形数阵:
设Mk是第k行中的最大数,其中1≤k≤n,k∈N*.记M1<M2<…<Mn的概率为pn
(1)求p2的值;
(2)证明:pn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f (x)=ex﹣ax﹣1,其中e为自然对数的底数,a∈R.
(1)若a=e,函数g (x)=(2﹣e)x. ①求函数h(x)=f (x)﹣g (x)的单调区间;
②若函数F(x)= 的值域为R,求实数m的取值范围;
(2)若存在实数x1 , x2∈[0,2],使得f(x1)=f(x2),且|x1﹣x2|≥1,求证:e﹣1≤a≤e2﹣e.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定数列{cn},如果存在常数p、q使得cn+1=pcn+q对任意n∈N*都成立,则称{cn}为“M类数列”.

(1)若{an}是公差为d的等差数列,判断{an}是否为“M类数列”,并说明理由;

(2)若{an}是“M类数列”且满足:a1=2,an+an+1=32n

①求a2、a3的值及{an}的通项公式;

②设数列{bn}满足:对任意的正整数n,都有a1bn+a2bn﹣1+a3bn﹣2+…+anb1=32n+1﹣4n﹣6,且集合M={n|≥λ,n∈N*}中有且仅有3个元素,试求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l: (t为参数),与曲线C: (k为参数)交于A,B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把圆分成个扇形,设用4种颜色给这些扇形染色,每个扇形恰染一种颜色,并且要求相邻扇形的颜色互不相同,设共有种方法.

(1)写出的值

(2)猜想 ,并用数学归纳法证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某手机厂商推出一款6吋大屏手机,现对500名该手机用户(200名女性,300名男性)进行调查,对手机进行评分,评分的频数分布表如下:

女性用户

分值区间

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

频数

20

40

80

50

10

男性用户

分值区间

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

频数

45

75

90

60

30

(Ⅰ)完成下列频率分布直方图,并指出女性用户和男性用户哪组评分更稳定(不计算具体值,给出结论即可);

(Ⅱ)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取3名用户,求3名用户中评分小于90分的人数的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形是边长为2的菱形,平面

1)证明:平面平面

2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案