精英家教网 > 高中数学 > 题目详情
18.已知关于x的方程x2-2xcosA•cosB+(1-cosC)=0的两根之和等于两根之积,则△ABC一定是(  )
A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形

分析 根据题意和韦达定理列出等式,由诱导公式、两角和与差的余弦公式化简,由内角的范围和特殊角的三角函数值,判断出角之间的关系可得答案,

解答 解:∵x2-2xcosA•cosB+(1-cosC)=0的两根之和等于两根之积,
∴2cosA•cosB=1-cosC,
又A+B+C=π,则cosC=-cos(A+B),
∴2cosA•cosB=1+cos(A+B)=1+cosAcosB-sinAsinB,
则cosAcosB+sinAsinB=1,即cos(A-B)=1,
∵A、B∈(0,π),∴A-B=0,即A=B,
∴△ABC一定是等腰三角形,
故选:C.

点评 本题考查诱导公式、两角和与差的余弦公式等,以及韦达定理,考查化简、变形能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知$\frac{1+tan(θ+720°)}{1-tan(θ-360°)}$=3+2$\sqrt{2}$,求:[cos2(π-θ)+sin(π+θ)•cos(π-θ)+2sin2(θ-π)]•$\frac{1}{co{s}^{2}(-θ-2π)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.给出下列三个命题:
①“若x2+2x-3≠0,则x≠-3”为假命题;
②若p∨q为真命题,则p,q均为真命题;
③命题p:?x∈R,3x>0,则¬p:?x0∈R,3${\;}^{{x}_{0}}$≤0.
其中正确的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设a∈R,a2-1+(a+1)i是纯虚数,其中i是虚数单位,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设p:l<x<2,q:2x>1,则P是q成立的(  )
A.必要不充分条件B.充分不必要条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)的定义域为R,它的导函数y=f′(x)的部分图象如图所示,则下面结论正确的是(  )
A.在(1,2)上函数f(x)为增函数
B.在(3,4)上函数f(x)为减函数
C.在(1,3)上函数f(x)有极大值
D.x=3是函数f(x)在区间[1,5]上的极小值点

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知m∈R,p:方程$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{m}$=1表示焦点在y轴上的椭圆;q:在复平面内,复数z=1+(m-3)i对应的点在第四象限.若p∧q为真,则m的取值范围是(2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.记动点P是棱长为1的正方体ABCD-A1B1C1D1的对角线BD1上一点,记$\overrightarrow{{D}_{1}P}$=λ$\overrightarrow{{D}_{1}B}$,当∠APC为钝角时,则λ的取值范围为(  )
A.(0,1)B.($\frac{1}{3}$,1)C.(0,$\frac{1}{3}$)D.(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设圆x2+y2-2x-15=0的圆心为F1,直线l过点F2(-1,0)且交圆F1于P,Q两点,线段PF2的垂直平分线交线段PF1于M点.
(1)证明|MF1|+|MF2|为定值,并写出点M的轨迹方程;
(2)设点M的轨迹为T,T与x轴交点为A,B,直线l与T交于C,D两点,记△ABD与△ABC的面积分别为S1和S2,求|S1-S2|的最大值.

查看答案和解析>>

同步练习册答案