精英家教网 > 高中数学 > 题目详情

如图,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AA1=数学公式=3,AB=2,BC=1.
(1)证明:BC⊥平面ACC1A1
(2)D为CC1中点,在棱AB上是否存在一点E,使DE∥平面AB1C1,证明你的结论.
(3)求二面角B-AB1-C1的余弦值的大小.

(1)证明:在矩形ACC1A1中,AA1==3,AB=2,BC=1
∴AB2=AC2+BC2
∴BC⊥AC
∵AA1⊥平面ABC,
∴AA1⊥BC
∵AA1∩AC=A
∴BC⊥平面ACC1A1
(2)解:分别取BB1中点M和AB中点E,由DM∥B1C1,EM∥AB1,得平面EMD∥平面AB1C1,∴DE∥平面AB1C1
即E为AB中点时,DE∥平面AB1C1
(3)解:以C为坐标原点,CB,CC1,CA所在直线分别为x轴、y轴、z轴建立空间直角坐标系,
则C(0,0,0),B(1,0,0),A(0,0,),C1(0,,0),B1(1,,0),A1(0,),D(0,,0)
是平面ABB1的一个法向量
可得,∴可取=(
是平面AB1C1的一个法向量,且与二面角B-AB1-C1的大小相等
∴cos==-
∴所求二面角B-AB1-C1的余弦值的大小为-
分析:(1)先证明BC⊥AC,由AA1⊥平面ABC,可得AA1⊥BC,利用线面垂直的判定,可得结论;
(2)分别取BB1中点M和AB中点E,可得平面EMD∥平面AB1C1,从而DE∥平面AB1C1
(3)建立空间直角坐标系,求出平面ABB1的一个法向量=(),是平面AB1C1的一个法向量,且与二面角B-AB1-C1的大小相等,从而可求二面角B-AB1-C1的余弦值的大小.
点评:本题主要考查二面角的计算,直线和平面垂直、平行的性质、判定,考查学生空间想象能力,计算能力、转化能力
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1中,∠ACB=90°,CC1⊥平面ABC,AC=BC=CC1=1,则直线A1C1和平面ACB1的距离等于
 
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB⊥AC,D、E分别为AA1、B1C的中点,AB=AC.
(1)证明:DE⊥平面BCC1
(2)设B1C与平面BCD所成的角的大小为30°,求二面角A-BD-C.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黑龙江)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=
12
AA1,D是棱AA1的中点.
(Ⅰ)证明:平面BDC1⊥平面BDC
(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1的底面ABC为正三角形,侧棱AA1⊥平面ABC,D是BC中点,且AA1=AB
(1)证明:AD⊥BC1
(2)证明:A1C∥平面AB1D.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•大连二模)如图,三棱柱ABC-A′B′C′,cc′=
2
,BC′=
2
,BC=2,△ABC是以BC为底边的等腰三角形,平面ABC⊥平面BCC′B′,E、F分别为棱AB、CC′的中点.
(I)求证:EF∥平面A′BC′;
(Ⅱ)若AC≤
2
,且EF与平面ACC'A'所成的角的余弦为
7
3
,求二面角C-AA'-B的大小.

查看答案和解析>>

同步练习册答案