精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)求函数的单调递增区间;

(2)当时,方程恰有两个不同的实数根,求实数的取值范围;

(3)将函数的图象向右平移个单位后所得函数的图象关于原点中心对称,求的最小值.

【答案】(1);(2);(3)

【解析】

(1)由余弦函数的单调性,解不等式,即可求出;(2)利用函数的性质,结合时的单调性与最值,可得实数的取值范围;(3)先求出的解析式,然后利用图象关于原点中心对称,是奇函数,可求出的最小值。

(1)由余弦函数的单调性,解不等式

,所以函数的单调递增区间为

(2)函数的单调递增区间为,单调递减区间为

所以函数上单调递增,在上单调递减,

所以当时,函数与函数的图象有两个公共点,

即当时,方程恰有两个不同的实数根时。

(3)函数的图象向右平移个单位,

得到,则是奇函数,

因为,所以当时,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在数列中, .

1)求出

2)归纳猜想出数列的通项公式;

3)证明通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC-A1B1C1中,AC=BC=CC1ACBC,点DAB的中点.

(1)求证:CD⊥平面A1ABB1

(2)求证:AC1∥平面CDB1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数的图像有两个不同交点,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数y=2sin(2x+ )的图象向右平移 个周期后,所得图象对应的函数为(  )
A.y=2sin(2x+
B.y=2sin(2x+
C.y=2sin(2x﹣
D.y=2sin(2x﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆离心率为是椭圆的左、右焦点,以为圆心,为半径的圆和以为圆心、为半径的圆的交点在椭圆上.

(1)求椭圆的方程;

(2)设椭圆的下顶点为,直线与椭圆交于两个不同的点,是否存在实数使得以为邻边的平行四边形为菱形?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我校的课外综合实践研究小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到市气象观测站与市博爱医院抄录了16月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:

110

210

310

410

510

610

昼夜温差 (°C)

10

11

13

12

8

6

就诊人数 ()

22

25

29

26

16

12

该综合实践研究小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.

1)若选取的是1月与6月的两组数据,请根据25月份的数据,求出关于的线性回归方程

2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?

参考数据:

.

参考公式:回归直线,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方体ABCD-A1B1C1D1中,EAB中点,FCD1中点.

(1)求证:EF∥平面ADD1A1

(2)求直线EF和平面CDD1C1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,既为偶函数,又在(0,+∞)上为增函数的是(  )

A. B. C. D.

查看答案和解析>>

同步练习册答案