【题目】已知函数,.
(1)求函数的单调递增区间;
(2)当时,方程恰有两个不同的实数根,求实数的取值范围;
(3)将函数的图象向右平移个单位后所得函数的图象关于原点中心对称,求的最小值.
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC-A1B1C1中,AC=BC=CC1,AC⊥BC,点D是AB的中点.
(1)求证:CD⊥平面A1ABB1;
(2)求证:AC1∥平面CDB1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数y=2sin(2x+ )的图象向右平移 个周期后,所得图象对应的函数为( )
A.y=2sin(2x+ )
B.y=2sin(2x+ )
C.y=2sin(2x﹣ )
D.y=2sin(2x﹣ )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆离心率为,,是椭圆的左、右焦点,以为圆心,为半径的圆和以为圆心、为半径的圆的交点在椭圆上.
(1)求椭圆的方程;
(2)设椭圆的下顶点为,直线与椭圆交于两个不同的点,是否存在实数使得以为邻边的平行四边形为菱形?若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我校的课外综合实践研究小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到市气象观测站与市博爱医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
日 期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
昼夜温差 (°C) | 10 | 11 | 13 | 12 | 8 | 6 |
就诊人数 (个) | 22 | 25 | 29 | 26 | 16 | 12 |
该综合实践研究小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
(1)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出关于的线性回归方程.
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?
参考数据: ;
.
参考公式:回归直线,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】正方体ABCD-A1B1C1D1中,E为AB中点,F为CD1中点.
(1)求证:EF∥平面ADD1A1;
(2)求直线EF和平面CDD1C1所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com