精英家教网 > 高中数学 > 题目详情
椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的长轴是短轴的两倍,点A(
3
1
2
)
在椭圆上.不过原点的直线l与椭圆相交于A、B两点,设直线OA、l、OB的斜率分别为k1、k、k2,且k1、k、k2恰好构成等比数列,记△ABO的面积为S.
(1)求椭圆C的方程.
(2)试判断|OA|2+|OB|2是否为定值?若是,求出这个值;若不是,请说明理由?
(3)求S的最大值.
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(1)根据椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的长轴是短轴的两倍,点A(
3
1
2
)
在椭圆上,建立方程,求出几何量,即可求椭圆C的方程.
(2)设直线l的方程为y=kx+m,代入椭圆方程,消去y,根据k1、k、k2恰好构成等比数列,求出k,进而表示出|OA|2+|OB|2,即可得出结论;
(3)表示出△ABO的面积,利用基本不等式,即可求S的最大值.
解答: 解:(1)由题意可知a=2b且
3
a2
+
1
4b2
=1

∴a=2,b=1,…2分
∴椭圆的方程为
x2
4
+y2=1

(2)设直线l的方程为y=kx+m,A(x1,y1),B(x2,y2),
由直线l的方程代入椭圆方程,消去y得:(1+4k2)x2+8kmx+4m2-4=0,
∴x1+x2=-
8km
1+4k2
,x1x2=
4m2-4
1+4k2
且△=16(1+4k2-m2)>0,
∵k1、k、k2恰好构成等比数列.
∴k2=k1k2=
(kx1+m)(kx2+m)
x1x2

∴-4k2m2+m2=0,
∴k=±
1
2

此时△=16(2-m2)>0,即m∈(-
2
2

∴x1+x2=±2m,x1x2=2m2-2
∴|OA|2+|OB|2=x12+y12+x22+y22=
3
4
[(x1+x22-2x1x2]+2=5,
∴|OA|2+|OB|2是定值为5.…
(3)S=
1
2
|AB|d=
1
2
1+k2
|x1-x2|•
|m|
1+k2
=
1
2
4m2-(8m2-8)
|m|

=
(2-m2)m2
(
2-m2+m2
2
)2
=1,
当且仅当m=±1时,S的最大值为1.
点评:本题考查椭圆的标准方程,直线与椭圆的位置关系,等比数列的性质,基本不等式,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数f(x)=3sin(2x-
π
3
)的图象关于点(-
π
6
,0)对称;
②若a≥b>-1,则
a
1+a
b
1+b

③存在唯一的实数x,使x3+x2+1=0;
④已知P为双曲线x2-
y2
9
=1上一点,F1、F2分别为双曲线的左右焦点,且|PF2|=4,则|PF1|=2或6.
其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个结论:
(1)两条直线都和同一个平面平行,则这两条直线平行;
(2)两条直线没有公共点,则这两条直线平行;
(3)两条直线都和第三条直线垂直,则这两条直线平行;
其中正确的命题个数为(  )
A、0
B、1
C、π
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,则输出S的值为(  )
A、3B、-6C、10D、-15

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是等差数列,数列{bn}是等比数列,且对任意的n∈N*,都有a1b1+a2b2+a3b3+…+anbn=n•2n+3
(1)若{bn}的首项为4,公比为2,求数列{an+bn}的前n项和Sn
(2)若a1=8,
   ①求数列{an}与{bn}的通项公式;
   ②试探究:数列{bn}中是否存在某一项,它可以表示为该数列中其它r(r∈N*,r≥2)项的和?若存在,请求出该项;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}为等差数列,且a5=14,a7=20,数列{bn}的前n项和为Sn,且满足3Sn=Sn-1+2(n≥2,n∈N*),b1=
2
3

(1)求数列{an},{bn}的通项公式;
(2)若cn=an•bn,Tn为数列{cn}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

正项数列{an}中,a1=4,其前n项和Sn满足:Sn2-(an+1+n-1)Sn-(an+1+n)=0.
(Ⅰ)求an与Sn
(Ⅱ)令bn=
2n-1+1
(3n-2)an
,数列{bn2}的前n项和为Tn.证明:对于任意的n∈N*,都有Tn
5
12

查看答案和解析>>

科目:高中数学 来源: 题型:

命题“?x∈R,ax2-2ax+3≥0成立”是真命题,则实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

条件p:x≥0,条件q:x2≤x,则p是q的(  )
A、充分而不必要条件
B、必要而不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

同步练习册答案