精英家教网 > 高中数学 > 题目详情
15.(1)已知集合A={x|y=$\sqrt{{x}^{2}-5x-14}$},B={x|m+1≤x≤2m+1}.若A∪B=A,求实数m的取值范围;
(2)若函数y=f(x)的值域是[$\frac{1}{4}$,4],求函数y=f(x)-2$\sqrt{f(x)}$的值域.

分析 (1)化简集合A,由A∪B=A可得B⊆A,分类讨论,即可求实数m的取值范围;
(2)利用换元、配方法,即可求函数y=f(x)-2$\sqrt{f(x)}$的值域.

解答 解:(1)A={x|x≥7或x≤-2},由A∪B=A可得B⊆A.
①B=∅,2m+1<m+1$\left\{\begin{array}{l}{2m+1≥m+1}\\{2m+1}\end{array}\right.$,∴m<0;?
②B≠∅,$\left\{\begin{array}{l}{2m+1≥m+1}\\{2m+1}\end{array}\right.$或$\left\{\begin{array}{l}{2m+1≥m+1}\\{m+1≥7}\end{array}\right.$,∴m≥6
综上m<0或m≥6…(6分)   
(2)令$\sqrt{f(x)}$=t(t∈[$\frac{1}{2}$,2]),y=t2-2t=(t-1)2-1
∵t∈[$\frac{1}{2}$,2],∴y∈[-1,0].…(10分)

点评 本题考查集合的关系,考查函数的值域,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l上.
(1)若圆心C也在直线y=-x+5上,求圆C的方程;
(2)在(1)的条件下,过点A作圆C的切线,求切线的方程;
(3)若圆C上存在点M,使|MA|=|MO|,求圆心C的横坐标a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求证:椭圆$\frac{x^2}{25}+\frac{y^2}{9}=1$与曲线$\frac{x^2}{25-k}+\frac{y^2}{9-k}=1$(k<25且k≠9)有相同的焦点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知P(8,a)在抛物线y2=4px上,且P到焦点的距离为10,则焦点到准线的距离为(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=|x-l|+|x-3|.
(I)解不等式f(x)≤6;
(Ⅱ)若不等式f(x)≥ax-1对任意x∈R恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数$f(x)=\left\{\begin{array}{l}x(1+x),_{\;}^{\;}x≥0\\ x(1-x){,_{\;}}x<0\end{array}\right.$的单调性为增函数;奇偶性为奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{an}为等比数列,a1=3,a4=81,若数列{bn}满足bn=(n+1)log3an,则{$\frac{1}{{b}_{n}}$}的前n项和Sn=$\frac{n}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在正方体ABCD-A1B1C1D1中,点E,F分别是上底面A1B1C1D1和侧面CDD1C1的中心.
(1)求cos∠EAF;
(2)求直线AE与平面CDD1C1所成角的正弦值;
(3)求直线AF与平面BDD1B1所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知曲线C1:$\left\{\begin{array}{l}{x=-4+cost}\\{y=3+sint}\end{array}\right.$(t为参数),C2:$\left\{\begin{array}{l}{x=6cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数);
(1)C1,C2的方程为普通方程,并说明它们分别表示什么曲线?
(2)若C1上的点P对应的参数t=$\frac{π}{2}$,Q为C2上的动点,求PQ中点M到直线C3:$\left\{\begin{array}{l}{x=-3\sqrt{3}+\sqrt{3}t}\\{y=-3-t}\end{array}\right.$(t为参数)距离的最小值;
(3)若Q为曲线C2上的动点,求Q到直线C3距离的最小值和最大值;
(4)已知点P(x,y)是曲线C1上的动点,求2x+y的取值范围;
(5)若x+y+a≥0恒成立,(x,y)在曲线C1上,求实数a的取值范围.

查看答案和解析>>

同步练习册答案