精英家教网 > 高中数学 > 题目详情
7.已知集合M={x|x<-3或x>5},P={x|(x-a)(x-8)≤0}.
(1)求M∩P={x|5<x≤8}的充要条件;
(2)若x∈M是x∈P的一个必要但不充分条件,求实数a的取值范围.

分析 (1)根据已知中集合M={x|x<-3,或x>5},P={x|(x-a)•(x-8)≤0},结合二次不等式的解集,分a≥8,5<a<8,-3≤a≤5,a<-3,几种情况分析M∩P={x|5<x≤8}是否成立,可得结论;
(2)通过讨论a的范围,求出关于p的不等式的解集,结合p?M,求出a的范围即可.

解答 解:(1)∵集合M={x|x<-3,或x>5},P={x|(x-a)•(x-8)≤0}.
若a≥8,则M∩P={x|8≤x≤a},不满足条件;
若5<a<8,则M∩P={x|a<x≤8},不满足条件;
若-3≤a≤5,则M∩P={x|5<x≤8},满足条件;
若a<-3,则M∩P={x|a<x<-3,或5<x≤8},不满足条件;
故M∩P={x|5<x≤8}的充要条件为a∈[-3,5];
(2)若x∈M是x∈P的一个必要但不充分条件,即p?M,
a≤8时:p:a≤x≤8,则a>5,
a>8时:p:8≤x≤a,a>8即可,
综上a>5.

点评 本题考查的知识点是充要条件的定义,二次不等式的解法,难度不大,属于基础题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.设偶函数f(x)对任意x∈R都有f(x)=-$\frac{1}{f(x-3)}$,且当x∈[-3,-2]时,f(x)=4x,则f(5.5)=(  )
A.10B.-10C.$\frac{1}{10}$D.-$\frac{1}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.计算下列各式的值:
(1)($\frac{1}{16}$)${\;}^{-\frac{3}{4}}$-4•(-2)-3+($\frac{1}{4}$)0-9${\;}^{\frac{1}{2}}$;
(2)2log32-log3$\frac{32}{9}$+log38-5${\;}^{lo{g}_{5}3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,点A在半径为1且圆心在原点的圆上,∠A0x=45°,点P从点A出发,依逆时针方向匀速地沿单位圆周旋转.已知P在1s内转过的角度为θ(0°<θ<180°),经过2s到达第三象限,经过14s后又回到出发点A.求θ,并判断其所在的象限.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x|2a-x|+2x,g(x)=2ax2+2x-3-a,a∈R.
(1)若a=0,判断函数y=f(x)的奇偶性,并加以证明;
(2)若a=2时,函数f(x)-m=0有两个零点,求实数m的值;
(3)若函数g(x)在区间[-1,1]上有零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知数列{an}(an>1)满足an+1=10an2,数列{bn}满足bn=lgan+1,且4b1为bm与bk的等比中项(m,k∈N*),则$\frac{1}{m}+\frac{1}{k}$的最小值是(  )
A.$\frac{25}{6}$B.2C.$\frac{7}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=$\left\{\begin{array}{l}{x+1}&{x≤0}\\{lo{g}_{2}x}&{x>0}\end{array}\right.$,则函数y=f[f(x)]-1的图象与x轴有2个交点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知奇函数f(x)在(-∞,+∞)上是减函数,且f(a2)+f(a-2)>0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知抛物线y=ax2的准线方程为y=-1,则实数a=$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案