精英家教网 > 高中数学 > 题目详情
(2012•威海二模)已知函数f(x)=alnx+
a+1
2
x2
+1.
(Ⅰ)当a=-
1
2
时,求f(x)在区间[
1
e
,e]上的最值;
(Ⅱ)讨论函数f(x)的单调性;
(Ⅲ)当-1<a<0时,有f(x)>1+
a
2
ln(-a)恒成立,求a的取值范围.
分析:(Ⅰ)求导f(x)的定义域,求导函数,利用函数的最值在极值处与端点处取得,即可求得f(x)在区间[
1
e
,e]上的最值;
(Ⅱ)求导函数,分类讨论,利用导数的正负,可确定函数的单调性;
(Ⅲ)由(Ⅱ)知,当-1<a<0时,f(x)min=f(
-a
a+1
),即原不等式等价于f(
-a
a+1
)>1+
a
2
ln(-a),由此可求a的取值范围.
解答:解:(Ⅰ)当a=-
1
2
时,f(x)=-
1
2
lnx+
x2
4
+1
,∴f′(x)=
x2-1
2x

∵f(x)的定义域为(0,+∞),∴由f′(x)=0得x=1.---------------------------(2分)
∴f(x)在区间[
1
e
,e]上的最值只可能在f(1),f(
1
e
),f(e)取到,
而f(1)=
5
4
,f(
1
e
)=
3
2
+
1
4e2
,f(e)=
1
2
+
e2
4

∴f(x)max=f(e)=
1
2
+
e2
4
,f(x)min=f(1)=
5
4
.---------------------------(4分)
(Ⅱ)f′(x)=
(a+1)x2+a
x
,x∈(0,+∞).
①当a+1≤0,即a≤-1时,f′(x)<0,∴f(x)在(0,+∞)上单调递减;-------------(5分)
②当a≥0时,f′(x)>0,∴f(x)在(0,+∞)上单调递增;----------------(6分)
③当-1<a<0时,由f′(x)>0得x2
-a
a+1
,∴x>
-a
a+1
x>-
-a
a+1
(舍去)
∴f(x)在(
-a
a+1
,+∞)单调递增,在(0,
-a
a+1
)上单调递减;--------------------(8分)
综上,当a≥0时,f(x)在(0,+∞)上单调递增;
当-1<a<0时,f(x)在(
-a
a+1
,+∞)单调递增,在(0,
-a
a+1
)上单调递减;当a≤-1时,f(x)在(0,+∞)上单调递减;-----------------------(9分)
(Ⅲ)由(Ⅱ)知,当-1<a<0时,f(x)min=f(
-a
a+1

即原不等式等价于f(
-a
a+1
)>1+
a
2
ln(-a)--------------------------(10分)
即aln
-a
a+1
+
a+1
2
-
-a
a+1
+1>1+
a
2
ln(-a)
整理得ln(a+1)>-1
∴a>
1
e
-1,----------------------------(11分)
又∵-1<a<0,∴a的取值范围为(
1
e
-1,0).---------------------------(12分)
点评:本题考查导数知识的运用,考查函数的单调性,考查函数的最值,考查恒成立问题,确定函数的单调性,求函数的最值是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•威海二模)如图,菱形ABCD的边长为2,∠A=60°,M为DC的中点,若N为菱形内任意一点(含边界),则
AM
AN
的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•威海二模)在等比数列{an}中,a2=
1
4
a3a6=
1
512
.设bn=log2
a
2
n
2•log2
a
2
n+1
2
T
 
n
为数列{bn}的前n项和.
(Ⅰ)求an和Tn
(Ⅱ)若对任意的n∈N*,不等式λTn<n-2(-1)n恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•威海二模)如图,边长为2的正方形内有一不规则阴影部分,随机向正方形内投入200粒芝麻,恰有60粒落入阴影部分,则不规则图形的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•威海二模)某市职教中心组织厨师技能大赛,大赛依次设基本功(初赛)、面点制作(复赛)、热菜烹制(决赛)三个轮次的比赛,已知某选手通过初赛、复赛、决赛的概率分别是
3
4
2
3
1
4
且各轮次通过与否相互独立.
(I)设该选手参赛的轮次为ξ,求ξ的分布列和数学期望;
(Ⅱ)对于(I)中的ξ,设“函数f(x)=3sin
x+ξ
2
π(x∈R)是偶函数”为事件D,求事件D发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•威海二模)某商场调查旅游鞋的销售情况,随机抽取了部分顾客的购鞋尺寸,整理得如下频率分布直方图,其中直方图从左至右的前3个小矩形的面积之比为1:2:3,则购鞋尺寸在[39.5,43.5)内的顾客所占百分比为
55%
55%

查看答案和解析>>

同步练习册答案