精英家教网 > 高中数学 > 题目详情

【题目】一个几何体的三视图如图所示,已知正(主)视图是底边长为1的平行四边形,侧(左)视图是一个长为,宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.

1)求该几何体的体积

2)求该几何体的表面积

【答案】1226

【解析】

试题分析:(1)由已知可知,该几何体是一个底面是边长为1的正方形且高为的平行六面体。(2)由三视图分析可知此平行六面体上下底面为边长为1的正方形,前后两个面是平行四边形,左右两个面是矩形。详见解析。

试题解析:解:(1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为.

所以V1×1×.

(2)由三视图可知,该平行六面体中,A1D⊥平面ABCDCD⊥平面BCC1B1

所以AA12,侧面ABB1A1CDD1C1均为矩形,

所以S2×(1×11×2)62.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】当今,手机已经成为人们不可或缺的交流工具,人们常常把喜欢玩手机的人冠上了名号“低头族”,手机已经严重影响了人们的生活.—媒体为调查市民对低头族的认识,从某社区的500名市民中随机抽取名市民,按年龄情况进行统计的频率分布表和频率分布直方图如图:

(1)求出表中的值,并补全频率分布直方图;

(2)媒体记者为了做好调查工作,决定在第2,4,5组中用分层抽样的方法抽取6名市民进行问卷调查, 再从这6名市民中随机抽取2名接受电视采访,求第2组至少有一名接受电视采访的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】活水围网养鱼技术具有养殖密度高、经济效益好的特点.研究表明:活水围网养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数.当不超过/立方米时, 的值为千克/年;当时, 的一次函数,且当时,

)当时,求关于的函数的表达式.

)当养殖密度为多大时,每立方米的鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形为矩形,平面平面,且点上.

)求证:

)求三棱锥的体积

)设点在线段上,且满足,试在线段上确定一点,使得平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}的前n项和为Sn , 若a1=1,an+1=3Sn(n≥1),则a6=(
A.3×44
B.3×44+1
C.44
D.44+1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18,先采用分层抽样的方法从这三个协会中抽取6名运动员参加比赛.

I)求应从这三个协会中分别抽取的运动员人数;

II)将抽取的6名运动员进行编号,编号分别为,从这6名运动员中随机抽取2名参加双打比赛.

i)用所给编号列出所有可能的结果;

ii)设A为事件编号为的两名运动员至少有一人被抽到”,求事件A发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足an+1﹣an=2,a1=﹣5,则|a1|+|a2|+…+|a6|=(
A.9
B.15
C.18
D.30

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知坐标平面上点与两个定点 的距离之比等于5.

(1)求点的轨迹方程,并说明轨迹是什么图形;

(2)记(1)中的轨迹为,过点的直线所截得的线段的长为8,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P( ,1),Q(cosx,sinx),O为坐标原点,函数f(x)=
(Ⅰ)求函数f(x)的解析式及f(x)的最小正周期;
(Ⅱ)若A为△ABC的内角,f(A)=4,BC=3,求△ABC周长的最大值.

查看答案和解析>>

同步练习册答案