精英家教网 > 高中数学 > 题目详情
12、如图,已知平面α、β交于直线l,AB、CD分别在平面α,β内,且与l分别交于B,D两点.若∠ABD=∠CDB,试问AB,CD能否平行?并说明理由.
分析:由图可知直线AB与CD无交点,若AB与CD平行,则易得CD与平面α平行,AB与平面β平行,由线面平行的性质我们也易得AB,CD与平面α与平面β的交线平行,这与已知相矛盾,故直线AB,CD不能平行,我们可以用反证法证明结论.
解答:证明:直线AB,CD不能平行.证明如下:
若AB∥CD,则AB∥CD共面,记这个平面为γ.
∴AB,CD?γ.
∴AB?α,D∈γ.
由题知,AB?α,D∈α,且D∉AB,
根据过一条直线及这条直线外一点,
有且仅有一个平面,α与γ重合.
同理,β与γ重合.
∴α与β重合,这与题设矛盾.
∴AB,CD不能平行.
点评:本题考查的知识点是平面的基本性质及推论,其中反证法证明的步骤和方法需要熟练掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知平面α∥平面β∥平面γ,且β位于α与γ之间.点A、D∈α,C、F∈γ,
AC∩β=B,DF∩β=E.
(1)求证:
AB
BC
=
DE
EF

(2)设AF交β于M,AC≠DF,α与β间距离为h′,α与γ间距离为h,当
h′
h
的值是多少时,△BEM的面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知平面α∩平面β=MN,A∈α,B∈β,C∈MN且∠ACM=60°,∠BCN=45°,二面角A-MN-B=60°,AC=2.
(Ⅰ)求点A到平面β的距离;
(Ⅱ)设二面角A-BC-M的大小为θ,求tanθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•青州市模拟)如图,已知平面BCC1B1是圆柱的轴截面(经过圆柱的轴的截面),BC是圆柱底面的直径,O为底面圆心,E为母线CC1的中点,已知AB=AC=AA1=4.
(Ⅰ)求证:B1O⊥平面AEO;
(Ⅱ)求二面角B1-AE-O的余弦值;
(Ⅲ)求三棱锥A-B1OE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•温州一模)如图,已知平面QBC与直线PA均垂直于Rt△ABC所在平面,且PA=AB=AC,
(Ⅰ)求证:PA∥平面QBC;
(Ⅱ)若PQ⊥平面QBC,求CQ与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁德模拟)如图,已知平面AEMN丄平面ABCD,四边形AEMN为 正方形,四边形ABCD为直角梯形,AB∥CD,∠ABC=90°,BC=CD=2AB=2,E 为 CD 的中点.
(I )求证:MC∥平面BDN;
(II)求多面体ABDN的体积.

查看答案和解析>>

同步练习册答案