精英家教网 > 高中数学 > 题目详情
过抛物线y2=4x焦点的直线交抛物线于A、B两点,已知|AB|=8,O为坐标原点,则△OAB的重心的横坐标为
 
分析:先求得抛物线焦点坐标,进而设出过焦点的直线方程代入抛物线方程消去x,根据韦达定理求得x1+x2和x1x2=,代入|AB|的表达式中即可求得k,进而根据三个定点的横坐标求得△OAB的重心的横坐标.
解答:解:由题意知抛物线焦点F(1,0),
设过焦点F(1,0)的直线为y=k(x-1)(k≠0),A(x1,y1),B(x2,y2).
代入抛物线方程消去y得k2x2-2(k2+2)x+k2=0.
∵k2≠0,∴x1+x2=
2(k2+2)
k2
,x1x2=1.
∵|AB|=
(1+k2)(x1-x2)2
=
(1+k2)[(x1+x2)2-4x1x2]
=
(1+k2)[
4(k2+2)2
k4
-4]
=8,
∴k2=1.
∴△OAB的重心的横坐标为x=
0+x1+x2
3
=2.
点评:本题主要考查了直线与圆锥曲线的综合问题.常涉及直线与圆锥曲线联立消元后利用韦达定理解决问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过抛物线y2=4x焦点的直线交抛物线于A、B两点,过B点作抛物线的准线l的垂线,垂足为C,已知点A(4,4),则直线AC的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=4x焦点的直线与抛物线交于A,B两点,|AB|=8,则线段AB的中点横坐标为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区二模)过抛物线y2=4x焦点的直线交抛物线于A,B两点,若|AB|=10,则AB的中点到y轴的距离等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,过抛物线y2=4x焦点的直线依次交抛物线与圆(x-1)2+y2=1于A,B,C,D,则
AB
CD
=
1
1

查看答案和解析>>

同步练习册答案